Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Overview

Implicit Internal Video Inpainting

Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

paper | project website | 4K data | demo video

Introduction

Want to remove objects from a video without days of training and thousands of training videos? Try our simple but effective internal video inpainting method. The inpainting process is zero-shot and implicit, which does not need any pretraining on large datasets or optical-flow estimation. We further extend the proposed method to more challenging tasks: video object removal with limited annotated masks, and inpainting on ultra high-resolution videos (e.g., 4K videos).

TO DO

  • Release code for 4K video inpainting

Setup

Installation

git clone https://github.com/Tengfei-Wang/Implicit-Internal-Video-Inpainting.git
cd Implicit-Internal-Video-Inpainting

Environment

This code is based on tensorflow 2.x (tested on tensorflow 2.2, 2.4).

The environment can be simply set up by Anaconda:

conda create -n IIVI python=3.7
conda activate IIVI
conda install tensorflow-gpu tensorboard
pip install pyaml 
pip install opencv-python
pip install tensorflow-addons

Or, you can also set up the environment from the provided environment.yml:

conda env create -f environment.yml
conda activate IIVI

Usage

Quick Start

We provide an example sequence 'bmx-trees' in ./inputs/ . To try our method:

python train.py

The default iterations is set to 50,000 in config/train.yml, and the internal learning takes ~4 hours with a single GPU. During the learning process, you can use tensorboard to check the inpainting results by:

tensorboard --logdir ./exp/logs

After the training, the final results can be saved in ./exp/results/ by:

python test.py

You can also modify 'model_restore' in config/test.yml to save results with different checkpoints.

Try Your Own Data

Data preprocess

Before training, we advise to dilate the object masks first to exclude some edge pixels. Otherwise, the imperfectly-annotated masks would lead to artifacts in the object removal task.

You can generate and preprocess the masks by this script:

python scripts/preprocess_mask.py --annotation_path inputs/annotations/bmx-trees

Basic training

Modify the config/train.yml, which indicates the video path, log path, and training iterations,etc.. The training iterations depends on the video length, and it typically takes 30,000 ~ 80,000 iterations for convergence for 100-frame videos. By default, we only use reconstruction loss for training, and it works well for most cases.

python train.py

Improve the sharpness and consistency

For some hard videos, the former training may not produce a pleasing result. You can fine-tune the trained model with another losses. To this end, modify the 'model_restore' in config/test.yml to the checkpoint path of basic training. Also set ambiguity_loss or stabilization_loss to True. Then fine-tune the basic checkpoint for 20,000-40,000 iterations.

python train.py

Inference

Modify the ./config/test.yml, which indicates the video path, log path, and save path.

python test.py

Mask Propagation from A Single Frame

When you only annotate the object mask of one frame (or few frames), our method can propagate it to other frames automatically.

Modify ./config/train_mask.yml. We typically set the training iterations to 4,000 ~ 20,000, and the learning rate to 1e-5 ~ 1e-4.

python train_mask.py

After training, modify ./config/test_mask.yml, and then:

python test_mask.py

High-resolution Video Inpainting

Our 4K videos and mask annotations can be downloaded in 4K data.

More Results

Our results on 70 DAVIS videos (including failure cases) can be found here for your reference :)
If you need the PNG version of our uncompressed results, please contact the authors.

Citation

If you find this work useful for your research, please cite:

@inproceedings{ouyang2021video,
  title={Internal Video Inpainting by Implicit Long-range Propagation},
  author={Ouyang, Hao and Wang, Tengfei and Chen, Qifeng},
  booktitle={International Conference on Computer Vision (ICCV) },
  year={2021}
} 

If you are also interested in the image inpainting or internal learning, this paper can be also helpful :)

@inproceedings{wang2021image,
  title={Image Inpainting with External-internal Learning and Monochromic Bottleneck},
  author={Wang, Tengfei and Ouyang, Hao and Chen, Qifeng},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5120--5129},
  year={2021}
}

Contact

Please send emails to Hao Ouyang or Tengfei Wang if there is any question

An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022