Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Related tags

Deep LearningTGAN-SR
Overview

Generating Symbolic Reasoning Problems with Transformer GANs

This is the implementation of the paper Generating Symbolic Reasoning Problems with Transformer GANs.

Constructing training data for symbolic reasoning domains is challenging: On the one hand existing instances are typically hand-crafted and too few to be trained on directly, on the other hand synthetically generated instances are often hard to evaluate in terms of their meaningfulness.

We provide a GAN and a Wasserstein GAN equipped with Transformer encoders to generate sensible and challenging training data for symbolic reasoning domains. Even without autoregression, the GAN models produce syntactically correct problem instances. The generated data can be used as a substitute for real training data, and, especially, the training data can be generated from a real data set that is too small to be trained on directly.

For example, the models produced the following correct mathematical expressions:

and the following correct Linear-time Temporal Logic (LTL) formulas used in verification:

Installation

The code is shipped as a Python package that can be installed by executing

pip install -e .

in the impl directory (where setup.py is located). Python version 3.6 or higher is required. Additional dependencies such as tensorflow will be installed automatically. To generate datasets or solve instances immediately after generation, the LTL satisfiability checking tool aalta is required as binary. It can be obtained from bitbucket (earliest commit in that repository). After compiling, ensure that the binary aalta resides under the bin folder.

Datasets

A zip file containing our original datasets can be downloaded from here. Unpack its contents to the datasets directory.

Dataset generation

Alternatively, datasets can be generated from scratch. The following procedure describes how to construct a dataset similar to the main base dataset (LTLbase):

First, generate a raw dataset by

python -m tgan_sr.data_generation.generator -od datasets/LTLbase --splits all_raw:1 --timeout 2 -nv 10 -ne 1600000 -ts 50 --log-each-x-percent 1 --frac-unsat None

(possibly rename to not override the supplied dataset). Enter the newly created directory.

Optional: Visualize the dataset (like Figures 5 and 6 in the paper)

python -m tgan_sr.utils.analyze_dataset all_raw.txt formula,sat

To filter the dataset for duplicates and balance classes per size

python -m tgan_sr.utils.update_dataset all_raw.txt unique - | python -m tgan_sr.utils.update_dataset - balance_per_size all_balanced.txt

Optional: Calculate relaxed satisfiability

python -m tgan_sr.utils.update_dataset all_balanced.txt relaxed_sat all_balanced_rs.txt

Optional: Visualize the dataset (like Figures 7 and 8 in the paper)

python -m tgan_sr.utils.analyze_dataset all_balanced_rs.txt formula,sat+relaxed

Split the data into training and validation sets

python -m tgan_sr.utils.update_dataset all_balanced_rs.txt shuffle+split=train:8,val:1,test:1

Experiments (training)

The folder configs contains JSON files for each type of experiment in the paper. Settings for different hyperparameters can be easily adjusted.

A model can be trained like this:

python -m tgan_sr.train.gan --run-name NAME --params-file configs/CONFIG.json

During training, relevant metrics will be logged to train_custom in the run's directory and can be viewed with tensorboard afterwards.

A list of all configurations and corresponding JSON files:

  • Standard WGAN: wgan_gp10_nl6-4_nc2_bs1024.json
  • Standard GAN: gan_nl6-4_nc2_bs1024.json
  • different σ for added noise: add parameter "gan_sigma_real" and assign desired value
  • WGAN on 10K-sized base dataset: n10k_wgan_gp10_nl6-4_nc2_bs512.json
  • Sample data from the trained WGAN: sample_n10k_wgan_gp10_nl6-4_nc2_bs512.json (ensure the "load_from" field matches your trained run name)
  • Classifier on default dataset: class_nl4_bs1024.json
  • Classifier on generated dataset: class_Generated_nl4_bs1024.json
  • WGAN with included classifier: wgan+class_nl6-3s1_nc2_bs1024.json
  • WGAN with absolute uncertainty objective: wgan+class+uncert-abs_nl6-3s1_nc2_bs1024.json (ensure the "looad_from" field matches your pre-trained name)
  • WGAN with entropy uncertainty objective: wgan+class+uncert-entr_nl6-3s1_nc2_bs1024.json (ensure the "looad_from" field matches your pre-trained name)
  • Sample data from the trained WGAN with entropy uncertainty objective: sample_wgan+class+uncert-entr_nl6-3s1_nc2_bs1024.json (ensure the "load_from" field matches your trained run name)

Evaluation

To test a trained classifier on an arbitrary dataset (validation):

python -m tgan_sr.train.gan --run-name NAME --test --ds-name DATASET_NAME

The model will be automatically loaded from the latest checkpoint in the run's directory.

How to Cite

@article{TGAN-SR,
    title = {Generating Symbolic Reasoning Problems with Transformer GANs},
    author = {Kreber, Jens U and Hahn, Christopher},
    journal = {arXiv preprint},
    year = {2021}
}
Owner
Reactive Systems Group
Saarland University
Reactive Systems Group
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023