Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

Overview

DiffSinger - PyTorch Implementation

PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension).

Status (2021.06.03)

  • Naive Version of DiffSinger
  • Shallow Diffusion Mechanism: Training boundary predictor by leveraging pre-trained auxiliary decoder + Training denoiser using k as a maximum time step

Quickstart

Dependencies

You can install the Python dependencies with

pip3 install -r requirements.txt

Inference

You have to download the pretrained models and put them in output/ckpt/LJSpeech/.

For English single-speaker TTS, run

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --restore_step 160000 --mode single -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml -t config/LJSpeech/train.yaml

The generated utterances will be put in output/result/.

Batch Inference

Batch inference is also supported, try

python3 synthesize.py --source preprocessed_data/LJSpeech/val.txt --restore_step 160000 --mode batch -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml -t config/LJSpeech/train.yaml

to synthesize all utterances in preprocessed_data/LJSpeech/val.txt

Controllability

The pitch/volume/speaking rate of the synthesized utterances can be controlled by specifying the desired pitch/energy/duration ratios. For example, one can increase the speaking rate by 20 % and decrease the volume by 20 % by

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --restore_step 160000 --mode single -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml -t config/LJSpeech/train.yaml --duration_control 0.8 --energy_control 0.8

Training

Datasets

The supported datasets are

  • LJSpeech: a single-speaker English dataset consists of 13100 short audio clips of a female speaker reading passages from 7 non-fiction books, approximately 24 hours in total.
  • (will be added more)

Preprocessing

First, run

python3 prepare_align.py config/LJSpeech/preprocess.yaml

for some preparations.

As described in the paper, Montreal Forced Aligner (MFA) is used to obtain the alignments between the utterances and the phoneme sequences. Alignments for the LJSpeech datasets are provided here from ming024's FastSpeech2. You have to unzip the files in preprocessed_data/LJSpeech/TextGrid/.

After that, run the preprocessing script by

python3 preprocess.py config/LJSpeech/preprocess.yaml

Alternately, you can align the corpus by yourself. Download the official MFA package and run

./montreal-forced-aligner/bin/mfa_align raw_data/LJSpeech/ lexicon/librispeech-lexicon.txt english preprocessed_data/LJSpeech

or

./montreal-forced-aligner/bin/mfa_train_and_align raw_data/LJSpeech/ lexicon/librispeech-lexicon.txt preprocessed_data/LJSpeech

to align the corpus and then run the preprocessing script.

python3 preprocess.py config/LJSpeech/preprocess.yaml

Training

Train your model with

python3 train.py -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml -t config/LJSpeech/train.yaml

TensorBoard

Use

tensorboard --logdir output/log/LJSpeech

to serve TensorBoard on your localhost. The loss curves, synthesized mel-spectrograms, and audios are shown.

Implementation Issues

  1. Pitch extractor comparison (on LJ001-0006.wav)

    pyworld is used to extract f0 (fundamental frequency) as pitch information in this implementation. Empirically, however, I found that all three methods were equally acceptable for clean datasets (e.g., LJSpeech) as above figures. Note that pysptk would work better for noisy datasets (as described in STYLER).

  2. Stack two layers of FFTBlock for the lyrics encoder (text encoder).

  3. (Naive version) The number of learnable parameters is 34.337M, which is larger than the original paper (26.744M). The diffusion module takes a significant portion of whole parameters.

  4. I did not remove the energy prediction of FastSpeech2 since it is not critical to the model training or performance (as described in LightSpeech). It should be easily removed without any performance degradation.

  5. Use HiFi-GAN instead of Parallel WaveGAN (PWG) for vocoding.

Citation

@misc{lee2021diffsinger,
  author = {Lee, Keon},
  title = {DiffSinger},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/keonlee9420/DiffSinger}}
}

References

You might also like...
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Multistream CNN for Robust Acoustic Modeling
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

Comments
  • Training Error

    Training Error

    In this case, , i ran the scripts python3 train.py -p config/vietnam/preprocess.yaml -m config/vietnam/model.yaml -t config/vietnam/train.yaml File "train.py", line 199, in main(args, configs) File "train.py", line 85, in main losses = Loss(batch, output) File "/home/thanhdo/envs/diffsinger_env/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/thanhdo/Documents/DiffSinger/model/loss.py", line 69, in forward log_duration_targets = log_duration_targets.masked_select(src_masks) RuntimeError: The size of tensor a (39) must match the size of tensor b (136) at non-singleton dimension 1

    Screen Shot 2021-06-23 at 3 56 10 PM

    opened by thanhdo99 8
  • diffusion_projection in ResidualBlock

    diffusion_projection in ResidualBlock

    Your implementation has diffusion_projection for every residual block similar to DiffWave, but this is inconsistent with the paper as the original architecture directly adds E_t (output of the step embedding module) to the input before the first convolution layer. Is there a reason behind this change?

    opened by tebin 1
Releases(v0.1.0)
Owner
Keon Lee
Conversational AI | Expressive Speech Synthesis | Open-domain Dialog | Empathic Computing | NLP | Disentangled Representation | Generative Models | HCI
Keon Lee
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

EDSR modelling A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repositor

Samuel Jackson 7 Nov 03, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023