Deep Reinforcement Learning for Multiplayer Online Battle Arena

Related tags

Deep LearningMOBA_RL
Overview

MOBA_RL

Deep Reinforcement Learning for Multiplayer Online Battle Arena

Prerequisite

  1. Python 3
  2. gym-derk
  3. Tensorflow 2.4.1
  4. Dotaservice of TimZaman
  5. Seed RL of Google
  6. Ubuntu 20.04
  7. RTX 3060 GPU, 16GB RAM is used to run Dota2 environment with rendering
  8. RTX 3080 GPU, 46GB RAM is used to training 16 number of headless Dota2 environment together in my case

Derk Environment

We are going to train small MOBA environment called Derk.

First, move to dr-derks-mutant-battlegrounds folder.

Run below command to run the 50 parallel environemnt. I modified Seel_RL of Google for my MOBA case.

$ python learner_1.py --workspace_path [your path]/dr-derks-mutant-battlegrounds/
$ python learner_2.py --workspace_path [your path]/dr-derks-mutant-battlegrounds/
$ python run.py -p1 bot -p2 oldbot -n 50

You can check the training progress using Tensorboard log under tboard path of workspace.

Dota2 Environment

Rendering Environment

You first need to install Dota 2 from Steam. After installation, please check there is Dota2 folder under /home/[your account]/.steam/steam/steamapps/common/dota 2 beta'. We are going to run Dota2 from terminal command.

Next, you need to download and install dotaservice. In my case, I should modity the _run_dota function of dotaservice.py like below.

async def _run_dota(self):
  script_path = os.path.join(self.dota_path, self.DOTA_SCRIPT_FILENAME)
  script_path = '/home/kimbring2/.local/share/Steam/ubuntu12_32/steam-runtime/run.sh'

  # TODO(tzaman): all these options should be put in a proto and parsed with gRPC Config.
  args = [
       script_path,
       '/home/kimbring2/.local/share/Steam/steamapps/common/dota 2 beta/game/dota.sh',
       '-botworldstatesocket_threaded',
       '-botworldstatetosocket_frames', '{}'.format(self.ticks_per_observation),
       '-botworldstatetosocket_radiant', '{}'.format(self.PORT_WORLDSTATES[TEAM_RADIANT]),
       '-botworldstatetosocket_dire', '{}'.format(self.PORT_WORLDSTATES[TEAM_DIRE]),
       '-con_logfile', 'scripts/vscripts/bots/{}'.format(self.CONSOLE_LOG_FILENAME),
       '-con_timestamp',
       '-console',
       '-dev',
       '-insecure',
       '-noip',
       '-nowatchdog',  # WatchDog will quit the game if e.g. the lua api takes a few seconds.
       '+clientport', '27006',  # Relates to steam client.
       '+dota_1v1_skip_strategy', '1',
       '+dota_surrender_on_disconnect', '0',
       '+host_timescale', '{}'.format(self.host_timescale),
       '+hostname dotaservice',
       '+sv_cheats', '1',
       '+sv_hibernate_when_empty', '0',
       '+tv_delay', '0',
       '+tv_enable', '1',
       '+tv_title', '{}'.format(self.game_id),
       '+tv_autorecord', '1',
       '+tv_transmitall', '1',  # TODO(tzaman): what does this do exactly?
  ]

Training Environment

You need to build the Docker image of Dotaservice mentioned in README of Docker of the dotaservice.

You can run the Seel RL for Dota2 using below command.

$ ./run_dotaservice.sh 16
$ ./run_impala.sh 16

Addidinally, you can terminate all process using below command.

$ ./stop.sh
Owner
Dohyeong Kim
Researchers interested in creating agents that behave like humans using Deep Learning
Dohyeong Kim
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023