CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

Related tags

Deep LearningCLUES
Overview

License: MIT

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

This repo contains the data and source code for baseline models in the NeurIPS 2021 benchmark paper for Constrained Language Understanding Evaluation Standard (CLUES) under MIT License.

Overview

The benchmark data is located in the data directory. We also release source codes for two fine-tuning strategies on CLUES, one with classic fine-tuning and the other with prompt-based fine-tuning.

Classic finetuning

Setup Environment

  1. > git clone [email protected]:microsoft/CLUES.git
  2. > git clone [email protected]:namisan/mt-dnn.git
  3. > cp -rf CLUES/classic_finetuning/ mt-dnn/
  4. > cd mt-dnn/

Run Experiments

  1. Preprocess data
    > bash run_clues_data_process.sh

  2. Train/test Models
    > bash run_clues_batch.sh

Prompt fine-tuning

Setup

  1. cd prompt_finetuning
  2. Run sh setup.sh to automatically fetch dependency codebase and apply our patch for CLUES

Run Experiments

All prompt-based funetuning baselines run commands are in experiments.sh, simple run by sh experiments.sh

Leaderboard

Here we maintain a leaderboard, allowing researchers to submit their results as entries.

Submission Instructions

  • Each submission must be submitted as a pull request modifying the markdown file underlying the leaderboard.
  • The submission must attach an accompanying public paper and public source code for reproducing their results on our dataset.
  • A submission can be toward any subset of tasks in our benchmark, or toward the aggregate leaderboard.
  • For any task targeted by the submission, we require evaluation on (1) 10, 20, and 30 shots, and (2) all 5 splits of the corresponding dataset and a report of their mean and standard deviation.
  • Each leaderboard will be sorted by the 30-shot mean S1 score (where S1 score is a variant of F1 score defined in our paper).
  • The submission should not use data from the 4 other splits during few-shot finetuning of any 1 split, either as extra training set or as validation set for hyperparameter tuning.
  • However, we allow external data, labeled or unlabeled, to be used for such purposes. Each submission using external data must mark the corresponding columns "external labeled" and/or "external unlabeled". Note, in this context, "external data" refers to data used after pretraining (e.g., for task-specific tuning); in particular, methods using existing pretrained models only, without extra data, should not mark either column. For obvious reasons, models cannot be trained on the original labeled datasets from where we sampled the few-shot CLUES data.
  • In the table entry, the submission should include a method name and a citation, hyperlinking to their publicly released source code reproducing the results. See the last entry of the table below for an example.

Abbreviations

  • FT = (classic) finetuning
  • PT = prompt based tuning
  • ICL = in-context learning, in the style of GPT-3
  • μ±σ = mean μ and standard deviation σ across our 5 splits. Aggregate standard deviation is calculated using the sum-of-variance formula from individual tasks' standard deviations.

Benchmarking CLUES for Aggregate 30-shot Evaluation

Shots (K=30) external labeled external unlabeled Average ▼ SST-2 MNLI CoNLL03 WikiANN SQuAD-v2 ReCoRD
Human N N 81.4 83.7 69.4 87.4 82.6 73.5 91.9
T5-Large-770M-FT N N 43.1±6.7 52.3±2.9 36.8±3.8 51.2±0.1 62.4±0.6 43.7±2.7 12±3.8
BERT-Large-336M-FT N N 42.1±7.8 55.4±2.5 33.3±1.4 51.3±0 62.5±0.6 35.3±6.4 14.9±3.4
BERT-Base-110M-FT N N 41.5±9.2 53.6±5.5 35.4±3.2 51.3±0 62.8±0 32.6±5.8 13.1±3.3
DeBERTa-Large-400M-FT N N 40.1±17.8 47.7±9.0 26.7±11 48.2±2.9 58.3±6.2 38.7±7.4 21.1±3.6
RoBERTa-Large-355M-FT N N 40.0±10.6 53.2±5.6 34.0±1.1 44.7±2.6 48.4±6.7 43.5±4.4 16±2.8
RoBERTa-Large-355M-PT N N 90.2±1.8 61.6±3.5
DeBERTa-Large-400M-PT N N 88.4±3.3 62.9±3.1
BERT-Large-336M-PT N N 82.7±4.1 45.3±2.0
GPT3-175B-ICL N N 91.0±1.6 33.2±0.2
BERT-Base-110M-PT N N 79.4±5.6 42.5±3.2
LiST (Wang et al.) N Y 91.3 ±0.7 67.9±3.0
Example (lastname et al.) Y/N Y/N 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Individual Task Performance over Multiple Shots

SST-2

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
GPT-3 (175B) ICL N N 85.9±3.7 92.0±0.7 91.0±1.6 -
RoBERTa-Large PT N N 88.8±3.9 89.0±1.1 90.2±1.8 93.8
DeBERTa-Large PT N N 83.4±5.3 87.8±3.5 88.4±3.3 91.9
Human N N 79.8 83 83.7 -
BERT-Large PT N N 63.2±11.3 78.2±9.9 82.7±4.1 91
BERT-Base PT N N 63.9±10.0 76.7±6.6 79.4±5.6 91.9
BERT-Large FT N N 46.3±5.5 55.5±3.4 55.4±2.5 99.1
BERT-Base FT N N 46.2±5.6 54.0±2.8 53.6±5.5 98.1
RoBERTa-Large FT N N 38.4±21.7 52.3±5.6 53.2±5.6 98.6
T5-Large FT N N 51.2±1.8 53.4±3.2 52.3±2.9 97.6
DeBERTa-Large FT N N 43.0±11.9 40.8±22.6 47.7±9.0 100
Example (lastname et al.) Y/N Y/N 0±0 0±0 0±0 -

MNLI

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N Y 78.1 78.6 69.4 -
LiST (wang et al.) N N 60.5±8.3 67.2±4.5 67.9±3.0 -
DeBERTa-Large PT N N 44.5±8.2 60.7±5.3 62.9±3.1 88.1
RoBERTa-Large PT N N 57.7±3.6 58.6±2.9 61.6±3.5 87.1
BERT-Large PT N N 41.7±1.0 43.7±2.1 45.3±2.0 81.9
BERT-Base PT N N 40.4±1.8 42.1±4.4 42.5±3.2 81
T5-Large FT N N 39.8±3.3 37.9±4.3 36.8±3.8 85.9
BERT-Base FT N N 37.0±5.2 35.2±2.7 35.4±3.2 81.6
RoBERTa-Large FT N N 34.3±2.8 33.4±0.9 34.0±1.1 85.5
BERT-Large FT N N 33.7±0.4 28.2±14.8 33.3±1.4 80.9
GPT-3 (175B) ICL N N 33.5±0.7 33.1±0.3 33.2±0.2 -
DeBERTa-Large FT N N 27.4±14.1 33.6±2.5 26.7±11.0 87.6

CoNLL03

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 87.7 89.7 87.4 -
BERT-Base FT N N 51.3±0 51.3±0 51.3±0 -
BERT-Large FT N N 51.3±0 51.3±0 51.3±0 89.3
T5-Large FT N N 46.3±6.9 50.0±0.7 51.2±0.1 92.2
DeBERTa-Large FT N N 50.1±1.2 47.8±2.5 48.2±2.9 93.6
RoBERTa-Large FT N N 50.8±0.5 44.6±5.1 44.7±2.6 93.2

WikiANN

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 81.4 83.5 82.6 -
BERT-Base FT N N 62.8±0 62.8±0 62.8±0 88.8
BERT-Large FT N N 62.8±0 62.6±0.4 62.5±0.6 91
T5-Large FT N N 61.7±0.7 62.1±0.2 62.4±0.6 87.4
DeBERTa-Large FT N N 58.5±3.3 57.9±5.8 58.3±6.2 91.1
RoBERTa-Large FT N N 58.5±8.8 56.9±3.4 48.4±6.7 91.2

SQuAD v2

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 71.9 76.4 73.5 -
T5-Large FT N N 43.6±3.5 28.7±13.0 43.7±2.7 87.2
RoBERTa-Large FT N N 38.1±7.2 40.1±6.4 43.5±4.4 89.4
DeBERTa-Large FT N N 41.4±7.3 44.4±4.5 38.7±7.4 90
BERT-Large FT N N 42.3±5.6 35.8±9.7 35.3±6.4 81.8
BERT-Base FT N N 46.0±2.4 34.9±9.0 32.6±5.8 76.3

ReCoRD

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 94.1 94.2 91.9 -
DeBERTa-Large FT N N 15.7±5.0 16.8±5.7 21.1±3.6 80.7
RoBERTa-Large FT N N 12.0±1.9 9.9±6.2 16.0±2.8 80.3
BERT-Large FT N N 9.9±5.2 11.8±4.9 14.9±3.4 66
BERT-Base FT N N 10.3±1.8 11.7±2.4 13.1±3.3 54.4
T5-Large FT N N 11.9±2.7 11.7±1.5 12.0±3.8 77.3

How do I cite CLUES?

@article{cluesteam2021,
  title={Few-Shot Learning Evaluation in Natural Language Understanding},
  author={Mukherjee, Subhabrata and Liu, Xiaodong and Zheng, Guoqing and Hosseini, Saghar and Cheng, Hao and Yang, Greg and Meek, Christopher and Awadallah, Ahmed Hassan and Gao, Jianfeng},
  year={2021}
}

Acknowledgments

MT-DNN: https://github.com/namisan/mt-dnn
LM-BFF: https://github.com/princeton-nlp/LM-BFF

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0

Tzu-Wei Huang 7.5k Dec 28, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021