Unofficial PyTorch implementation of Guided Dropout

Overview

Unofficial PyTorch implementation of Guided Dropout

This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm according to the paper published in AAA-19, but we can't guarantee the performance reported in the paper. We will list some experiment results soon.

TODO

  • Release the reproduced code
  • list experiment results
  • ...

Setup

pip install -r requirements.txt

Run

  1. Run Guided Dropout on CIFAR10 Dataset (mlp 3 hidden layers with 1024 nodes)
python mainpro.py --dataset CIFAR10 --arc mlp --mlp-depth 3 --hidden-dim 1024 -e 200 --lr 0.01 --exp-name mlp-1024-3-guided-dropout-cifar10
  1. Run Original Dropout on Fashionmnist Dataset (mlp 3 hidden layers with 8192 nodes)
python mainpro.py --dataset Fashionmnist --arc mlp --mlp-depth 3 --hidden-dim 8192 -e 200 --lr 0.01 --exp-name mlp-8192-3-original-dropout-cifar10 --drop-type Dropout --drop-rate 0.2
  1. Run Guided Dropout on CIFAR100 Dataset (ResNet-18)
python mainpro.py --dataset CIFAR100 --arc ResNet18 -e 200 --lr 0.01 --exp-name resnet18-guided-dropout-cifar100 --drop-type GuidedDropout --drop-rate 0.2

Result

CIFAR10

Algorithm MLP-1024-3 MLP-2048-3 MLP-4096-3 MLP-8192-3 ResNet18
Non Dropout - - - - -
Original Dropout - - - - -
Guided Dropout (top-k) * 58.75 59.65 59.64 59.92 94.02
Guided Dropout (DR) * 59.84 60.12 60.89 61.32 94.12
Guided Dropout - - - - -
Guided Dropout - - - - -

* means the result listed in the paper

CIFAR100

Algorithm MLP-1024-3 MLP-2048-3 MLP-4096-3 MLP-8192-3 ResNet18
Non Dropout - - - - -
Original Dropout - - - - -
Guided Dropout (top-k) * 30.92 31.59 31.34 32.11 76.98
Guided Dropout (DR) * 31.88 32.78 33.01 33.15 77.52
Guided Dropout - - - - -
Guided Dropout - - - - -
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022