Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

Related tags

Deep Learninglasr
Overview

LASR

Installation

Build with conda

conda env create -f lasr.yml
conda activate lasr
# install softras
cd third_party/softras; python setup.py install; cd -;
# install manifold remeshing
git clone --recursive -j8 git://github.com/hjwdzh/Manifold; cd Manifold; mkdir build; cd build; cmake .. -DCMAKE_BUILD_TYPE=Release;make; cd ../../

For docker installation, please see install.md

Data preparation

Create folders to store data and training logs

mkdir log; mkdir tmp; 
Synthetic data

To render {silhouette, flow, rgb} observations of spot.

python scripts/render_syn.py
Real data (DAVIS)

First, download DAVIS 2017 trainval set and copy JPEGImages/Full-Resolution and Annotations/Full-Resolution folders of DAVIS-camel into the according folders in database.

cp ...davis-path/DAVIS/Annotations/Full-Resolution/camel/ -rf database/DAVIS/Annotations/Full-Resolution/
cp ...davis-path/DAVIS-lasr/DAVIS/JPEGImages/Full-Resolution/camel/ -rf database/DAVIS/JPEGImages/Full-Resolution/

Then download pre-trained VCN optical flow:

pip install gdown
mkdir ./lasr_vcn
gdown https://drive.google.com/uc?id=139S6pplPvMTB-_giI6V2dxpOHGqqAdHn -O ./lasr_vcn/vcn_rob.pth

Run VCN-robust to predict optical flow on DAVIS camel video:

bash preprocess/auto_gen.sh camel
Your own video

You will need to download and install detectron2 to obtain object segmentations as instructed below.

python -m pip install detectron2 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu110/torch1.7/index.html

First, use any video processing tool (such as ffmpeg) to extract frames into JPEGImages/Full-Resolution/name-of-the-video.

mkdir database/DAVIS/JPEGImages/Full-Resolution/pika-tmp/
ffmpeg -ss 00:00:04 -i database/raw/IMG-7495.MOV -vf fps=10 database/DAVIS/JPEGImages/Full-Resolution/pika-tmp/%05d.jpg

Then, run pointrend to get segmentations:

cd preprocess
python mask.py pika path-to-detectron2-root; cd -

Assuming you have downloaded VCN flow in the previous step, run flow prediction:

bash preprocess/auto_gen.sh pika

Single video optimization

Synthetic spot Next, we want to optimize the shape, texture and camera parameters from image observartions. Optimizing spot takes ~20min on a single Titan Xp GPU.
bash scripts/spot3.sh

To render the optimized shape, texture and camera parameters

bash scripts/extract.sh spot3-1 10 1 26 spot3 no no
python render_vis.py --testdir log/spot3-1/ --seqname spot3 --freeze --outpath tmp/1.gif
DAVIS camel

Optimize on camel observations.

bash scripts/template.sh camel

To render optimized camel

bash scripts/render_result.sh camel
Costumized video (Pika)

Similarly, run the following steps to reconstruct pika

bash scripts/template.sh pika

To render reconstructed shape

bash scripts/render_result.sh pika
Monitor optimization

To monitor optimization, run

tensorboard --logdir log/

Example outputs

Evaluation

Run the following command to evaluate 3D shape accuracy for synthetic spot.

python scripts/eval_mesh.py --testdir log/spot3-1/ --gtdir database/DAVIS/Meshes/Full-Resolution/syn-spot3f/

Run the following command to evaluate keypoint accuracy on BADJA.

python scripts/eval_badja.py --testdir log/camel-5/ --seqname camel

Additional Notes

Other videos in DAVIS/BAJDA

Please refer to data preparation and optimization of the camel example, and modify camel to other sequence names, such as dance-twirl. We provide config files the configs folder.

Synthetic articulated objects

To render and reproduce results on articulated objects (Sec. 4.2), you will need to purchase and download 3D models here. We use blender to export animated meshes and run rendera_all.py:

python scripts/render_syn.py --outdir syn-dog-15 --nframes 15 --alpha 0.5 --model dog

Optimize on rendered observations

bash scripts/dog15.sh

To render optimized dog

bash scripts/render_result.sh dog
Batchsize

The current codebase is tested with batchsize=4. Batchsize can be modified in scripts/template.sh. Note decreasing the batchsize will improive speed but reduce the stability.

Distributed training

The current codebase supports single-node multi-gpu training with pytorch distributed data-parallel. Please modify dev and ngpu in scripts/template.sh to select devices.

Acknowledgement

The code borrows the skeleton of CMR

External repos:

External data:

Citation

To cite our paper,

@inproceedings{yang2021lasr,
  title={LASR: Learning Articulated Shape Reconstruction from a Monocular Video},
  author={Yang, Gengshan 
      and Sun, Deqing
      and Jampani, Varun
      and Vlasic, Daniel
      and Cole, Forrester
      and Chang, Huiwen
      and Ramanan, Deva
      and Freeman, William T
      and Liu, Ce},
  booktitle={CVPR},
  year={2021}
}  
Owner
Google
Google ❤️ Open Source
Google
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023