Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

Overview

English: README-EN.md

VRCWatch

VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。

使い方

VRChat 起動前、もしくは起動中に run.bat を実行してください。 または VRCWatch ディレクトリをカレントディレクトリにした状態で python3 -m vrcwatch を実行してください。

// TODO: 加筆する

Avatar Parameter

このプログラムでは VRChat の OSC (OpenSound Control) 機能を利用して、 以下のパラメータを Avatar Parameter として送信します。 全てのパラメータは必ず DateTime から始まります。

  • DateTimeYear
    • 型: 整数 (int)
    • グレゴリオ暦での年数です。
    • 2022 年であれば、2022 となります。
  • DateTimeMonth
    • 型: 整数 (int)
    • グレゴリオ暦での月です。1 以上 12 以下の整数を取ります。
    • 1 月あれば、1 を、2 月であれば 2 を、12 月であれば 12 を取ります。
  • DateTimeDay
    • 型: 整数 (int)
    • 当月内での日数です。1 以上 31 以下の整数を取ります。
    • 1 月 23 日であれば 23 を、2 月 29 日であれば、29 を、11 月 30 日であれば 30 を取ります。
  • DateTimeWeekDay
    • 型: 整数 (int)
    • 1 週間内での曜日です。0 以上 6 以下の整数を取ります。
    • 月曜日は 0 を、火曜日は 1 を、水曜日は 2 を、土曜日は 5 を、日曜日は 6 を取ります。
  • DateTimeHour
    • 型: 整数 (int)
    • 1 日を 24 分割している、時 (じ) です。0 以上 23 以下の整数を取ります。
    • 午前 0 時 12 分 (0:12) であれば 0 を、午後 3 時 45 分 (15:45) であれば 15 を、午後 11 時 59 分 (23:59) であれば 23 を取ります。
  • DateTimeMinute
    • 型: 整数 (int)
    • 1 時間を 60 分割している、分です。0 以上 59 以下の整数を取ります。
    • 午前 1 時 00 分 (1:00) であれば 0 を、午後 2 時 34 分 (14:34) であれば 34 を、午後 11 時 59 分 (23:59) であれば 59 を取ります。
  • DateTimeSecond
    • 型: 整数 (int)
    • 1 分間を 60 分割している、秒です。0 以上 59 以下の整数を取ります。
    • 午前 3 時 21 分 0 秒 (3:21:00) であれば 0 を、午後 1 時 23 分 45 秒 (13:23:45) であれば 45 を、午後 11 時 59 分 59 秒 (23:59:59) であれば 59 を取ります。
  • DateTimeHourF
    • 型: 実数 (float)
    • DateTimeHour を 24 で割った、1/24 刻みの実数です。0 以上 1 未満を取ります。
    • 午前 1 時 23 分 (1:23) であれば約 0.04167 (= 1.0 / 24) を、午後 11 時 59 分 (23:59) であれば約 0.95833 (= 23.0 / 24) を取ります。
  • DateTimeMinuteF
    • 型: 実数 (float)
    • DateTimeMinute を 60 で割った、1/60 刻みの実数です。0 以上 1 未満を取ります。
    • 午前 1 時 23 分 (1:23) であれば約 0.38333 (= 23.0 / 60) を、午後 11 時 59 分 (23:59) であれば約 0.98333 (= 59.0 / 60) を取ります。
  • DateTimeSecondF
    • 型: 実数 (float)
    • DateTimeSecond を 60 で割った、1/60 刻みの実数です。0 以上 1 未満を取ります。
    • 午前 4 時 32 分 1 秒 (3:21:01) であれば約 0.01667 (= 1.0 / 60) を、午後 2 時 34 分 59 秒 (14:24:59) であれば約 0.98333 (= 59.0 / 60) を取ります。
  • DateTimeDayTime
    • 型: 実数 (float)
    • 1 日の何割だけ時間が進んだかを表す実数です。0 以上 1 未満を取ります。
    • 午前 0 時 0 分 0 秒 (0:00:00) であれば 0.0 を、午後 12 時 59 分 59 秒 (23:59:59) を約 0.99999 を取ります。

Copyright / License

Copyright (c) 2022 Kosaki Mezumona

MIT License, see LICENSE.

Owner
Kosaki Mezumona
I'm Japanese programmer. I've studied about information technology and researched the aspect-oriented programming at a university.
Kosaki Mezumona
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021