Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

Overview

CMaskTrack R-CNN for OVIS

This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation dataset described in the tech report:

Occluded Video Instance Segmentation

Jiyang Qi1,2*, Yan Gao2*, Yao Hu2, Xinggang Wang1, Xiaoyu Liu2,
Xiang Bai1, Serge Belongie3, Alan Yuille4, Philip Torr5, Song Bai2,5 πŸ“§
1Huazhong University of Science and Technology 2Alibaba Group 3University of Copenhagen
4Johns Hopkins University 5University of Oxford

In this work, we collect a large-scale dataset called OVIS for Occluded Video Instance Segmentation. OVIS consists of 296k high-quality instance masks from 25 semantic categories, where object occlusions usually occur. While our human vision systems can understand those occluded instances by contextual reasoning and association, our experiments suggest that current video understanding systems cannot, which reveals that we are still at a nascent stage for understanding objects, instances, and videos in a real-world scenario.

We also present a simple plug-and-play module that performs temporal feature calibration to complement missing object cues caused by occlusion.

Some annotation examples can be seen below:

2592056 2930398 2932104 3021160

For more details about the dataset, please refer to our paper or website.

Model training and evaluation

Installation

This repo is built based on MaskTrackRCNN. A customized COCO API for the OVIS dataset is also provided.

You can use following commands to create conda env with all dependencies.

conda create -n cmtrcnn python=3.6 -y
conda activate cmtrcnn

conda install -c pytorch pytorch=1.3.1 torchvision=0.2.2 cudatoolkit=10.1 -y
pip install -r requirements.txt
pip install git+https://github.com/qjy981010/cocoapi.git#"egg=pycocotools&subdirectory=PythonAPI"

bash compile.sh

Data preparation

  1. Download OVIS from our website.
  2. Symlink the train/validation dataset to data/OVIS/ folder. Put COCO-style annotations under data/annotations.
mmdetection
β”œβ”€β”€ mmdet
β”œβ”€β”€ tools
β”œβ”€β”€ configs
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ OVIS
β”‚   β”‚   β”œβ”€β”€ train_images
β”‚   β”‚   β”œβ”€β”€ valid_images
β”‚   β”‚   β”œβ”€β”€ annotations
β”‚   β”‚   β”‚   β”œβ”€β”€ annotations_train.json
β”‚   β”‚   β”‚   β”œβ”€β”€ annotations_valid.json

Training

Our model is based on MaskRCNN-resnet50-FPN. The model is trained end-to-end on OVIS based on a MSCOCO pretrained checkpoint (mmlab link or google drive).

Run the command below to train the model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py --work_dir ./workdir/cmasktrack_rcnn_r50_fpn_1x_ovis --gpus 4

For reference to arguments such as learning rate and model parameters, please refer to configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py.

Evaluation

Our pretrained model is available for download at Google Drive (comming soon). Run the following command to evaluate the model on OVIS.

CUDA_VISIBLE_DEVICES=0 python test_video.py configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py [MODEL_PATH] --out [OUTPUT_PATH.pkl] --eval segm

A json file containing the predicted result will be generated as OUTPUT_PATH.pkl.json. OVIS currently only allows evaluation on the codalab server. Please upload the generated result to codalab server to see actual performances.

License

This project is released under the Apache 2.0 license, while the correlation ops is under MIT license.

Acknowledgement

This project is based on mmdetection (commit hash f3a939f), mmcv, MaskTrackRCNN and Pytorch-Correlation-extension. Thanks for their wonderful works.

Citation

If you find our paper and code useful in your research, please consider giving a star ⭐ and citation πŸ“ :

@article{qi2021occluded,
    title={Occluded Video Instance Segmentation},
    author={Jiyang Qi and Yan Gao and Yao Hu and Xinggang Wang and Xiaoyu Liu and Xiang Bai and Serge Belongie and Alan Yuille and Philip Torr and Song Bai},
    journal={arXiv preprint arXiv:2102.01558},
    year={2021},
}
Owner
Q . J . Y
A coder from hust
Q . J . Y
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個githubηš„repositoryδΈ»θ¦ζ˜―ε€‹δΊΊεœ¨ε­ΈηΏ’Kerasηš„δΈ€δΊ›θ¨˜ιŒ„εŠη·΄ηΏ’γ€‚εΈŒζœ›εœ¨ε­ΈηΏ’ιŽη¨‹δΈ­η™ΌηΎεˆ°δΈ€δΊ›ε₯½ηš„θ³‡θ¨Šθˆ‡η―„δΎ‹δΉŸε―δ»₯對想要學習使用 KerasδΎ†θ§£ζ±Ίε•ι‘Œηš„εŒε₯½οΌŒζˆ–ζ˜―ε°ζ·±εΊ¦ε­ΈηΏ’ζœ‰θˆˆθΆ£ηš„εœ¨ε­Έε­Έη”Ÿε―δ»₯ζœ‰δΈ€δΊ›ζ–ΉδΎΏη†θ§£θˆ‡δΈŠζ‰‹η―„δΎ‹

ErhWen Kuo 2.1k Dec 27, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

πŸ€— Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how πŸ€— Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021