High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Overview

Image Completion Transformer (ICT)

Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material

This repository is the official pytorch implementation of our ICCV 2021 paper, High-Fidelity Pluralistic Image Completion with Transformers.

Ziyu Wan1, Jingbo Zhang1, Dongdong Chen2, Jing Liao1
1City University of Hong Kong, 2Microsoft Cloud AI

🎈 Prerequisites

  • Python >=3.6
  • PyTorch >=1.6
  • NVIDIA GPU + CUDA cuDNN
pip install -r requirements.txt

To directly inference, first download the pretrained models from Dropbox, then

cd ICT
wget -O ckpts_ICT.zip https://www.dropbox.com/s/cqjgcj0serkbdxd/ckpts_ICT.zip?dl=1
unzip ckpts_ICT.zip

Some tips:

  • Masks should be binarized.
  • The extensions of images and masks should be .png.
  • The model is trained for 256x256 input resolution only.
  • Make sure that the downsampled (32x32 or 48x48) mask could cover all the regions you want to fill. If not, dilate the mask.

🌟 Pipeline

Why transformer?

Compared with traditional CNN-based methods, transformers have better capability in understanding shape and geometry.

🚀 Training

1) Transformer

cd Transformer
python main.py --name [exp_name] --ckpt_path [save_path] \
               --data_path [training_image_path] \
               --validation_path [validation_image_path] \
               --mask_path [mask_path] \
               --BERT --batch_size 64 --train_epoch 100 \
               --nodes 1 --gpus 8 --node_rank 0 \
               --n_layer [transformer_layer #] --n_embd [embedding_dimension] \
               --n_head [head #] --ImageNet --GELU_2 \
               --image_size [input_resolution]

Notes of transformer:

  • --AMP: Reduce the memory cost while training, but sometimes will lead to NAN.
  • --use_ImageFolder: Enable this option while training on ImageNet
  • --random_stroke: Generate the mask on-the-fly.
  • Our code is also ready for training on multiple machines.

2) Guided Upsampling

cd Guided_Upsample
python train.py --model 2 --checkpoints [save_path] \
                --config_file ./config_list/config_template.yml \
                --Generator 4 --use_degradation_2

Notes of guided upsampling:

  • --use_degradation_2: Bilinear downsampling. Try to match the transformer training.
  • --prior_random_degree: Stochastically deviate the sequence elements by K nearest neighbour.
  • Modify the provided config template according to your own training environments.
  • Training the upsample part won't cost many GPUs.

Inference

We provide very covenient and neat script for inference.

python run.py --input_image [test_image_folder] \
              --input_mask [test_mask_folder] \
              --sample_num 1  --save_place [save_path] \
              --ImageNet --visualize_all

Notes of inference:

  • --sample_num: How many completion results do you want?
  • --visualize_all: You could save each output result via disabling this option.
  • --ImageNet --FFHQ --Places2_Nature: You must enable one option to select corresponding ckpts.
  • Please use absolute path.

More results

FFHQ

Places2

ImageNet

To Do

  • Release training code
  • Release testing code
  • Release pre-trained models
  • Add Google Colab

📔 Citation

If you find our work useful for your research, please consider citing the following papers :)

@article{wan2021high,
  title={High-Fidelity Pluralistic Image Completion with Transformers},
  author={Wan, Ziyu and Zhang, Jingbo and Chen, Dongdong and Liao, Jing},
  journal={arXiv preprint arXiv:2103.14031},
  year={2021}
}

The real-world application of image inpainting is also ready! Try and cite our old photo restoration algorithm here.

@inproceedings{wan2020bringing,
title={Bringing Old Photos Back to Life},
author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={2747--2757},
year={2020}
}

💡 Acknowledgments

This repo is built upon minGPT and Edge-Connect. We also thank the provided cluster centers from OpenAI.

📨 Contact

This repo is currently maintained by Ziyu Wan (@Raywzy) and is for academic research use only. Discussions and questions are welcome via [email protected].

Owner
Ziyu Wan
Ph.D Student @ City University of Hong Kong
Ziyu Wan
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️ Dataset Summary Inspired by the recent widespread use of th

95 Dec 08, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022