YOLOv2 in PyTorch

Overview

YOLOv2 in PyTorch

NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0).

This is a PyTorch implementation of YOLOv2. This project is mainly based on darkflow and darknet.

I used a Cython extension for postprocessing and multiprocessing.Pool for image preprocessing. Testing an image in VOC2007 costs about 13~20ms.

For details about YOLO and YOLOv2 please refer to their project page and the paper: YOLO9000: Better, Faster, Stronger by Joseph Redmon and Ali Farhadi.

NOTE 1: This is still an experimental project. VOC07 test mAP is about 0.71 (trained on VOC07+12 trainval, reported by @cory8249). See issue1 and issue23 for more details about training.

NOTE 2: I recommend to write your own dataloader using torch.utils.data.Dataset since multiprocessing.Pool.imap won't stop even there is no enough memory space. An example of dataloader for VOCDataset: issue71.

NOTE 3: Upgrade to PyTorch 0.4: https://github.com/longcw/yolo2-pytorch/issues/59

Installation and demo

  1. Clone this repository

    git clone [email protected]:longcw/yolo2-pytorch.git
  2. Build the reorg layer (tf.extract_image_patches)

    cd yolo2-pytorch
    ./make.sh
  3. Download the trained model yolo-voc.weights.h5 and set the model path in demo.py

  4. Run demo python demo.py.

Training YOLOv2

You can train YOLO2 on any dataset. Here we train it on VOC2007/2012.

  1. Download the training, validation, test data and VOCdevkit

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
  2. Extract all of these tars into one directory named VOCdevkit

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
    tar xvf VOCdevkit_08-Jun-2007.tar
  3. It should have this basic structure

    $VOCdevkit/                           # development kit
    $VOCdevkit/VOCcode/                   # VOC utility code
    $VOCdevkit/VOC2007                    # image sets, annotations, etc.
    # ... and several other directories ...
  4. Since the program loading the data in yolo2-pytorch/data by default, you can set the data path as following.

    cd yolo2-pytorch
    mkdir data
    cd data
    ln -s $VOCdevkit VOCdevkit2007
  5. Download the pretrained darknet19 model and set the path in yolo2-pytorch/cfgs/exps/darknet19_exp1.py.

  6. (optional) Training with TensorBoard.

    To use the TensorBoard, set use_tensorboard = True in yolo2-pytorch/cfgs/config.py and install TensorboardX (https://github.com/lanpa/tensorboard-pytorch). Tensorboard log will be saved in training/runs.

  7. Run the training program: python train.py.

Evaluation

Set the path of the trained_model in yolo2-pytorch/cfgs/config.py.

cd faster_rcnn_pytorch
mkdir output
python test.py

Training on your own data

The forward pass requires that you supply 4 arguments to the network:

  • im_data - image data.
    • This should be in the format C x H x W, where C corresponds to the color channels of the image and H and W are the height and width respectively.
    • Color channels should be in RGB format.
    • Use the imcv2_recolor function provided in utils/im_transform.py to preprocess your image. Also, make sure that images have been resized to 416 x 416 pixels
  • gt_boxes - A list of numpy arrays, where each one is of size N x 4, where N is the number of features in the image. The four values in each row should correspond to x_bottom_left, y_bottom_left, x_top_right, and y_top_right.
  • gt_classes - A list of numpy arrays, where each array contains an integer value corresponding to the class of each bounding box provided in gt_boxes
  • dontcare - a list of lists

License: MIT license (MIT)

Owner
Long Chen
Computer Vision
Long Chen
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."

EfficientNet A PyTorch implementation of EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. [arxiv] [Official TF Repo] Implemen

AhnDW 298 Dec 10, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022