Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Overview

Ponder(ing) Transformer

Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of the input sequence, using the scheme from the PonderNet paper. Will also try to abstract out a pondering module that can be used with any block that returns an output with the halting probability.

This repository would not have been possible without repeated viewings of Yannic's educational video

Install

$ pip install ponder-transformer

Usage

import torch
from ponder_transformer import PonderTransformer

model = PonderTransformer(
    num_tokens = 20000,
    dim = 512,
    max_seq_len = 512
)

mask = torch.ones(1, 512).bool()

x = torch.randint(0, 20000, (1, 512))
y = torch.randint(0, 20000, (1, 512))

loss = model(x, labels = y, mask = mask)
loss.backward()

Now you can set the model to .eval() mode and it will terminate early when all samples of the batch have emitted a halting signal

import torch
from ponder_transformer import PonderTransformer

model = PonderTransformer(
    num_tokens = 20000,
    dim = 512,
    max_seq_len = 512,
    causal = True
)

x = torch.randint(0, 20000, (2, 512))
mask = torch.ones(2, 512).bool()

model.eval() # setting to eval makes it return the logits as well as the halting indices

logits, layer_indices = model(x,  mask = mask) # (2, 512, 20000), (2)

# layer indices will contain, for each batch element, which layer they exited

Citations

@misc{banino2021pondernet,
    title   = {PonderNet: Learning to Ponder}, 
    author  = {Andrea Banino and Jan Balaguer and Charles Blundell},
    year    = {2021},
    eprint  = {2107.05407},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
You might also like...
Implementation of the Transformer variant proposed in
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions. CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

Comments
  • Evaluating ponder-net on more pondering-steps than trained on.

    Evaluating ponder-net on more pondering-steps than trained on.

    As the paper says,

    In evaluation, and under known temporal or computational limitations, N can be set naively as a constant (or not set any limit, i.e. N → ∞). For training, we found that a more effective (and interpretable) way of parameterizing N is by defining a minimum cumulative probability of halting. N is then the smallest value of n such that sum( p_sub_ j > 1 − ε)over(j=1, n) , with the hyper-parameter ε positive near 0 (in our experiments 0.05).

    from that I infer that pondering can be done to more steps than trained on. How can be done so with this implementation?

    edit: I was going through the paper again,and I think what the paper means is that the max_num_pondering_steps:N should be re evaluated at every training-step, the model should be run till the condition is met or a pre-defined num of max steps is reached, and where the cumsum_probs condition will be met will be set as 'N', with the cumsum_probs normalised with one of the methods. Then that value of 'N' will be used to calc prior geom for the kl_div (and not normalising the prior geom term).

    i.e. if the num of pondering steps are initially set to 'M', then the model will recur for 'k' steps - i.e. till the condition is met or for 'M' num of max steps; then 'N' will be calculated by first calculating the probabilities - p_0 to p_k - then normalizing through one of the methods, then calculate cumulative-sum of those probabilities, and checking where the sum is greater than threshold, and assigning it the value 'N'. After that, calculating prior geometric values with the defined hyper-parameter, for 'N' seq-len, and using this in the kl-div term against the halting probs truncated to 'N' steps.

    λp is a hyper-parameter that defines a geometric prior distribution pG(λp) on the halting policy (truncated at N)

    opened by Vbansal21 0
  • Can pondernet used for imagenet?

    Can pondernet used for imagenet?

    I plan to do a project on the complexity of tasks on image dataset like imagenet, cifar 100. If I use a vision transformer, then can I implement my project?

    opened by fryegg 2
Releases(0.0.8)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023