Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

Overview

self-driving-car

In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

Hope this might be useful to someone! :-)

Overview

Projects

Overview
P1: Basic Lane Finding
(code)

Overview
P2: Traffic Signs
(code)

Overview
P3: Behavioral Cloning
(code)

Overview
P4: Adv. Lane Finding
(code)

Overview
P5: Vehicle Detection
(code)

Overview
P6: Ext. Kalman Filter
(code)

Overview
P7: Unsc. Kalman Filter
(code)

Overview
P8: Kidnapped Vehicle
(code)

Overview
P9: PID Controller
(code)

Overview
P10: MPC Controller
(code)

Overview
P11: Path Planning
(code)

Overview
P12: Road Segmentation
(code)

Capstone


Table of Contents

P1 - Detecting Lane Lines (basic)

  • Summary: Detected highway lane lines on a video stream. Used OpencV image analysis techniques to identify lines, including Hough Transforms and Canny edge detection.
  • Keywords: Computer Vision

P2 - Traffic Sign Classification

  • Summary: Built and trained a deep neural network to classify traffic signs, using TensorFlow. Experimented with different network architectures. Performed image pre-processing and validation to guard against overfitting.
  • Keywords: Deep Learning, TensorFlow, Computer Vision

P3 - Behavioral Cloning

  • Summary: Built and trained a convolutional neural network for end-to-end driving in a simulator, using TensorFlow and Keras. Used optimization techniques such as regularization and dropout to generalize the network for driving on multiple tracks.
  • Keywords: Deep Learning, Keras, Convolutional Neural Networks

P4 - Advanced Lane Finding

  • Summary: Built an advanced lane-finding algorithm using distortion correction, image rectification, color transforms, and gradient thresholding. Identified lane curvature and vehicle displacement. Overcame environmental challenges such as shadows and pavement changes.
  • Keywords: Computer Vision, OpenCV

P5 - Vehicle Detection and Tracking

  • Summary: Created a vehicle detection and tracking pipeline with OpenCV, histogram of oriented gradients (HOG), and support vector machines (SVM). Implemented the same pipeline using a deep network to perform detection. Optimized and evaluated the model on video data from a automotive camera taken during highway driving.
  • Keywords: Computer Vision, Deep Learning, OpenCV

P6 - Extended Kalman Filter

  • Summary: Implement the extended Kalman filter in C++. Simulated lidar and radar measurements are used to detect a bicycle that travels around your vehicle. Kalman filter, lidar measurements and radar measurements are used to track the bicycle's position and velocity.
  • Keywords: C++, Kalman Filter

P7 - Unscented Kalman Filter

  • Summary: Utilize an Unscented Kalman Filter to estimate the state of a moving object of interest with noisy lidar and radar measurements. Kalman filter, lidar measurements and radar measurements are used to track the bicycle's position and velocity.
  • Keywords: C++, Kalman Filter

P8 - Kidnapped Vehicle

  • Summary: Your robot has been kidnapped and transported to a new location! Luckily it has a map of this location, a (noisy) GPS estimate of its initial location, and lots of (noisy) sensor and control data. In this project you will implement a 2 dimensional particle filter in C++. Your particle filter will be given a map and some initial localization information (analogous to what a GPS would provide). At each time step your filter will also get observation and control data.
  • Keywords: C++, Particle Filter

P9 - PID Control

  • Summary: Implement a PID controller for keeping the car on track by appropriately adjusting the steering angle.
  • Keywords: C++, PID Controller

P10 - MPC Control

  • Summary: Implement an MPC controller for keeping the car on track by appropriately adjusting the steering angle. Differently from previously implemented PID controller, MPC controller has the ability to anticipate future events and can take control actions accordingly. Indeed, future time steps are taking into account while optimizing current time slot.
  • Keywords: C++, MPC Controller

P11 - Path Planning

  • Summary: The goal in this project is to build a path planner that is able to create smooth, safe trajectories for the car to follow. The highway track has other vehicles, all going different speeds, but approximately obeying the 50 MPH speed limit. The car transmits its location, along with its sensor fusion data, which estimates the location of all the vehicles on the same side of the road.
  • Keywords: C++, Path Planning

P12 - Road Segmentation

  • Summary: Implement the road segmentation using a fully-convolutional network.
  • Keywords: Python, TensorFlow, Semantic Segmentation

Owner
Andrea Palazzi
Senior Deep Learning Engineer @ Nomitri - Computer Vision PhD
Andrea Palazzi
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022