NL. The natural language programming language.

Related tags

Text Data & NLPNL
Overview

NL

A Natural-Language programming language. Built using Codex.

A few examples are inside the nl_projects directory.

How it works

Write any code in pure english, and have it compiled and run as regular code would. The only rules are:

  • Must have the .nl file extension
  • Every command is separated by a line-break
  • Make sure to keep the number of stuff per-line to a minimum. Doing so will result in better compilation.
  • comments are put in-between parentheses

Example: Guessing game.

Compiling a guessing game program looks something like this:

First you write the code in NL:

(the following is a guessing game)
create a maximum number of 100

Repeat forever...
Store a number between 1 and the maximum number. Call it the answer.
Increase the maximum number by 20
Tell the user that you are thinking of a number between 0 and the maximum number. Tell the user that they only have 14 chances to get it right.
Repeat 14 times...
Ask the user for a guess, and Convert it to a number
if the guess is equal to the answer, congrad the user and end the loop.
otherwise if the guess is higher or lower than the answer, tell the user.
Tell the user how many chances are left.
when the loop has ended, if the user has not guessed the answer, tell the user game over and then exit the game

When you compile the code, it gets copied into a directory and auto-indented (This stage can be skipped if desired, but doing so will result in greater likelyhood of erroneous code.):

Create a maximum number of 100

Repeat forever...
    Store a number between 1 and the maximum number. Call it the answer.
    Increase the maximum number by 20.
    Tell the user that you are thinking of a number between 0 and the maximum number. Tell the user that they only have 14 chances to get it right.
    Repeat 14 times...
        Ask the user for a guess, and Convert it to a number
        If the guess is equal to the answer, congradulate the user and end the loop.
        Otherwise if the guess is higher or lower than the answer, tell the user.
        Tell the user how many chances are left.
    When loop has ended, If user has not guessed the answer, tell the user game over and then exit the game.

Which then gets compiled to python code and executed:

answer: print("Your guess is too high") else: print("Your guess is too low") # CMD: Tell the user how many chances are left. print("You have " + str(14 - i) + " chances left") # CMD: When loop has ended, If user has not guessed the answer, tell the user game over and then exit the game. if guess != answer: print("Game over") exit()">
import random

# CMD: Create a maximum number of 100
max = 100
# CMD: Repeat forever...
while True:
    # CMD: Store a number between 1 and the maximum number. Call it the answer.
    answer = random.randint(1,max)
    # CMD: Increase the maximum number by 20.
    max = max + 20
    # CMD: Tell the user that you are thinking of a number between 0 and the maximum number. Tell the user that they only have 14 chances to get it right.
    print("I am thinking of a number between 0 and " + str(max))
    # CMD: Repeat 14 times...
    for i in range(0,14):
        # CMD: Ask the user for a guess, and Convert it to a number
        guess = int(input("Guess a number:"))
        # CMD: If the guess is equal to the answer, congradulate the user and end the loop.
        if guess == answer:
            print("You guessed it!")
            break;
        # CMD: Otherwise if the guess is higher or lower than the answer, tell the user.
        elif guess > answer:
            print("Your guess is too high")
        else: 
            print("Your guess is too low")
        # CMD: Tell the user how many chances are left.
        print("You have " + str(14 - i) + " chances left")
    # CMD: When loop has ended, If user has not guessed the answer, tell the user game over and then exit the game.
    if guess != answer:
        print("Game over")
        exit()

API List of commands (in compilation.py)

  • compile(nl_code_path)
  • compileAndRun(nl_code_path)
  • run(python_code_path)
  • compileWithoutCorrection(nl_code_path) Compiles without creating an indentation file to compile.
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
Saptak Bhoumik 14 May 24, 2022
Code for using and evaluating SpanBERT.

SpanBERT This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans. If you prefer

Meta Research 798 Dec 30, 2022
NLP: SLU tagging

NLP: SLU tagging

北海若 3 Jan 14, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
Collection of scripts to pinpoint obfuscated code

Obfuscation Detection (v1.0) Author: Tim Blazytko Automatically detect control-flow flattening and other state machines Description: Scripts and binar

Tim Blazytko 230 Nov 26, 2022
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
This repository describes our reproducible framework for assessing self-supervised representation learning from speech

LeBenchmark: a reproducible framework for assessing SSL from speech Self-Supervised Learning (SSL) using huge unlabeled data has been successfully exp

49 Aug 24, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
The RWKV Language Model

RWKV-LM We propose the RWKV language model, with alternating time-mix and channel-mix layers: The R, K, V are generated by linear transforms of input,

PENG Bo 877 Jan 05, 2023
Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers and helping them make a wise buying decision.

Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers an

Parv Bhatt 1 Jan 01, 2022