An 16kHz implementation of HiFi-GAN for soft-vc.

Overview

HiFi-GAN

An 16kHz implementation of HiFi-GAN for soft-vc.

Relevant links:

Example Usage

import torch
import numpy as np

# Load checkpoint
hifigan = torch.hub.load("bshall/hifigan:main", "hifigan_hubert_soft").cuda()
# Load mel-spectrogram
mel = torch.from_numpy(np.load("path/to/mel")).unsqueeze(0).cuda()
# Generate
wav, sr = hifigan.generate(mel)

Train

Step 1: Download and extract the LJ-Speech dataset

Step 2: Resample the audio to 16kHz:

usage: resample.py [-h] [--sample-rate SAMPLE_RATE] in-dir out-dir

Resample an audio dataset.

positional arguments:
  in-dir                path to the dataset directory
  out-dir               path to the output directory

optional arguments:
  -h, --help            show this help message and exit
  --sample-rate SAMPLE_RATE
                        target sample rate (default 16kHz)

Step 3: Download the dataset splits and move them into the root of the dataset directory. After steps 2 and 3 your dataset directory should look like this:

LJSpeech-1.1
│   test.txt
│   train.txt
│   validation.txt
├───mels
└───wavs

Note: the mels directory is optional. If you want to fine-tune HiFi-GAN the mels directory should contain ground-truth aligned spectrograms from an acoustic model.

Step 4: Train HiFi-GAN:

usage: train.py [-h] [--resume RESUME] [--finetune] dataset-dir checkpoint-dir

Train or finetune HiFi-GAN.

positional arguments:
  dataset-dir      path to the preprocessed data directory
  checkpoint-dir   path to the checkpoint directory

optional arguments:
  -h, --help       show this help message and exit
  --resume RESUME  path to the checkpoint to resume from
  --finetune       whether to finetune (note that a resume path must be given)

Generate

To generate using the trained HiFi-GAN models, see Example Usage or use the generate.py script:

usage: generate.py [-h] [--model-name {hifigan,hifigan-hubert-soft,hifigan-hubert-discrete}] in-dir out-dir

Generate audio for a directory of mel-spectrogams using HiFi-GAN.

positional arguments:
  in-dir                path to directory containing the mel-spectrograms
  out-dir               path to output directory

optional arguments:
  -h, --help            show this help message and exit
  --model-name {hifigan,hifigan-hubert-soft,hifigan-hubert-discrete}
                        available models

Acknowledgements

This repo is based heavily on https://github.com/jik876/hifi-gan.

You might also like...
 Fast Soft Color Segmentation
Fast Soft Color Segmentation

Fast Soft Color Segmentation

Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Comments
  • is pretrained weight of discriminator of base model available?

    is pretrained weight of discriminator of base model available?

    Thanks for nice work. @bshall

    I'm trying to train hifigan now, but it takes so long training it from scratch using other dataset.

    If discriminator of base model is also available, I could start finetuning based on that vocoder. it seems that you released only generator. Could you also release discriminator weights?

    opened by seastar105 3
  • NaN during training when using own dataset

    NaN during training when using own dataset

    While fine-tuning works as expected, doing regular training with a dataset that isn't LJSpeech would eventually cause a NaN loss at some point. The culprit appears to be the following line, which causes a division by zero if wav happens to contain perfect silence:

    https://github.com/bshall/hifigan/blob/374a4569eae5437e2c80d27790ff6fede9fc1c46/hifigan/dataset.py#L106

    I'm not sure what the best solution for this would be, as a quick fix I simply clipped the divisor so it can't reach zero:

    wav = flip * gain * wav / max([wav.abs().max(), 0.001])
    
    opened by cjay42 0
  • How to use this Vocoder with your Tacotron?

    How to use this Vocoder with your Tacotron?

    Thank you for your work. I used your Tacotron in your Universal Vocoding.The quality of the speech is excellent. However, the inference speed is slow. for that reason, I would like to use this hifigan as a vocoder. But Tacotron's n_mel is 80, while hifigan's n_mel is 128. How to use hifigan with Tacotron?

    opened by gheyret 0
Owner
Benjamin van Niekerk
PhD student at Stellenbosch University. Interested in speech and audio technology.
Benjamin van Niekerk
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
A PyTorch-based library for fast prototyping and sharing of deep neural network models.

A PyTorch-based library for fast prototyping and sharing of deep neural network models.

78 Jan 03, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Python Algorithm Interview Book Review

파이썬 알고리즘 인터뷰 책 리뷰 리뷰 IT 대기업에 들어가고 싶은 목표가 있다. 내가 꿈꿔온 회사에서 일하는 사람들의 모습을 보면 멋있다고 생각이 들고 나의 목표에 대한 열망이 강해지는 것 같다. 미래의 핵심 사업 중 하나인 SW 부분을 이끌고 발전시키는 우리나라의 I

SharkBSJ 1 Dec 14, 2021
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022