Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

Related tags

Deep LearningEMOShip
Overview

EMOShip

This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices".

If you use this dataset in your work, please cite our paper:

@article{chang2021memx,
  title={MemX: An Attention-Aware Smart Eyewear System for Personalized Moment Auto-capture},
  author={Chang, Yuhu and Zhao, Yingying and Dong, Mingzhi and Wang, Yujiang and Lu, Yutian and Lv, Qin and Dick, Robert P and Lu, Tun and Gu, Ning and Shang, Li},
  journal = {Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.},
  year={2021},
  doi = {10.1145/3463509}
}

TBD

Dataset

The data of EMO-Film dataset is collected in a controlled laboratory environment. The video clips were selected from the FilmStim dataset, as FilmStim is one of the widely-used emotion-eliciting video dataset. We divided all videos of FilmStim dataset (64 video clips in total) into 7 categories based on the provided sentiment labels, each category corresponding to one emotional class (the neutral plus six basic emotion). The detailed description was given in Section 4.1 in the paper.

Due to the privacy concerns raised by some volunteers, we cannot release the full dataset with all 25 the subjects included. However, following the outcomes of the privacy survey, we are able to make public a filtered version of our dataset, which consists of 16 subjects giving their permissions to release the data. The videos from the rest 9 participants are therefore omitted to protect their privacy.

The dataset can be downloaded here (TBD).

Data Format

EMO-Film has two parts and a csv file:

eye.tar.gz: This compressed package contains eye images captured when each participant watched different video segments. It contains 16 folders, each corresponding to participants. There are two subfolders under each user folder, corresponding to the two video clips watched by the participant. Each subfolder contains eye images stored in JPG format.

filmstim.tar.gz: This compressed package contains the 64 video clips mentioned above. There are 64 folders corresponding to 64 video clips, and each folder contains the frames in JPG format of video clips.

label.csv: This CSV file contains the corresponding relationship between the eye part and the filmstim part, as well as the gaze position of the eyes and the user's emotion annotation.

It contains the following attributes:

user: The participant number.

eye_frame_path: The relative path of eye image frame. The frame has cropped to preserve only the eye area.

world_frame_path: The relative path of filmstim image frame. Please note that participants actually watched video clips from the display with glasses. After post-processing, the area outside the monitor has been excluded. Here is the content displayed on the monitor, that is, the frame of FilmStim dataset.

gaze_x and gaze_y: The gaze position in the space of the scene frame. The are floating point numbers and origin 0,0 at the bottom left and 1,1 at the top right. Please note that corresponding to the above, the areas outside the screen have been excluded.

PD_x and PD_y: The pupil diameter in pixels in two axial directions.

confidence: The confidence of pupil position. A value of 0 indicates no confidence and 1 indicates perfect confidence.

label: The emotion categories marked by the user, 0-6 respectively indicate angry, disgust, fear, happy, sad, surprise, and neutral.

Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
PyTorch implementation of DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration (BMVC 2021)

DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [video] [paper] [supplementary] [data] [thesis] Introduction De

Natalie Lang 10 Dec 14, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022