Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

Related tags

Deep LearningEMOShip
Overview

EMOShip

This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices".

If you use this dataset in your work, please cite our paper:

@article{chang2021memx,
  title={MemX: An Attention-Aware Smart Eyewear System for Personalized Moment Auto-capture},
  author={Chang, Yuhu and Zhao, Yingying and Dong, Mingzhi and Wang, Yujiang and Lu, Yutian and Lv, Qin and Dick, Robert P and Lu, Tun and Gu, Ning and Shang, Li},
  journal = {Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.},
  year={2021},
  doi = {10.1145/3463509}
}

TBD

Dataset

The data of EMO-Film dataset is collected in a controlled laboratory environment. The video clips were selected from the FilmStim dataset, as FilmStim is one of the widely-used emotion-eliciting video dataset. We divided all videos of FilmStim dataset (64 video clips in total) into 7 categories based on the provided sentiment labels, each category corresponding to one emotional class (the neutral plus six basic emotion). The detailed description was given in Section 4.1 in the paper.

Due to the privacy concerns raised by some volunteers, we cannot release the full dataset with all 25 the subjects included. However, following the outcomes of the privacy survey, we are able to make public a filtered version of our dataset, which consists of 16 subjects giving their permissions to release the data. The videos from the rest 9 participants are therefore omitted to protect their privacy.

The dataset can be downloaded here (TBD).

Data Format

EMO-Film has two parts and a csv file:

eye.tar.gz: This compressed package contains eye images captured when each participant watched different video segments. It contains 16 folders, each corresponding to participants. There are two subfolders under each user folder, corresponding to the two video clips watched by the participant. Each subfolder contains eye images stored in JPG format.

filmstim.tar.gz: This compressed package contains the 64 video clips mentioned above. There are 64 folders corresponding to 64 video clips, and each folder contains the frames in JPG format of video clips.

label.csv: This CSV file contains the corresponding relationship between the eye part and the filmstim part, as well as the gaze position of the eyes and the user's emotion annotation.

It contains the following attributes:

user: The participant number.

eye_frame_path: The relative path of eye image frame. The frame has cropped to preserve only the eye area.

world_frame_path: The relative path of filmstim image frame. Please note that participants actually watched video clips from the display with glasses. After post-processing, the area outside the monitor has been excluded. Here is the content displayed on the monitor, that is, the frame of FilmStim dataset.

gaze_x and gaze_y: The gaze position in the space of the scene frame. The are floating point numbers and origin 0,0 at the bottom left and 1,1 at the top right. Please note that corresponding to the above, the areas outside the screen have been excluded.

PD_x and PD_y: The pupil diameter in pixels in two axial directions.

confidence: The confidence of pupil position. A value of 0 indicates no confidence and 1 indicates perfect confidence.

label: The emotion categories marked by the user, 0-6 respectively indicate angry, disgust, fear, happy, sad, surprise, and neutral.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022