Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

Related tags

Deep Learningnex-code
Overview

NeX: Real-time View Synthesis with Neural Basis Expansion

Project Page | Video | Paper | COLAB | Shiny Dataset

Open NeX in Colab

NeX

We present NeX, a new approach to novel view synthesis based on enhancements of multiplane image (MPI) that can reproduce NeXt-level view-dependent effects---in real time. Unlike traditional MPI that uses a set of simple RGBα planes, our technique models view-dependent effects by instead parameterizing each pixel as a linear combination of basis functions learned from a neural network. Moreover, we propose a hybrid implicit-explicit modeling strategy that improves upon fine detail and produces state-of-the-art results. Our method is evaluated on benchmark forward-facing datasets as well as our newly-introduced dataset designed to test the limit of view-dependent modeling with significantly more challenging effects such as the rainbow reflections on a CD. Our method achieves the best overall scores across all major metrics on these datasets with more than 1000× faster rendering time than the state of the art.

Table of contents



Getting started

conda env create -f environment.yml
./download_demo_data.sh
conda activate nex
python train.py -scene data/crest_demo -model_dir crest -http
tensorboard --logdir runs/

Installation

We provide environment.yml to help you setup a conda environment.

conda env create -f environment.yml

Dataset

Shiny dataset

Download: Shiny dataset.

We provide 2 directories named shiny and shiny_extended.

  • shiny contains benchmark scenes used to report the scores in our paper.
  • shiny_extended contains additional challenging scenes used on our website project page and video

NeRF's real forward-facing dataset

Download: Undistorted front facing dataset

For real forward-facing dataset, NeRF is trained with the raw images, which may contain lens distortion. But we use the undistorted images provided by COLMAP.

However, you can try running other scenes from Local lightfield fusion (Eg. airplant) without any changes in the dataset files. In this case, the images are not automatically undistorted.

Deepview's spaces dataset

Download: Modified spaces dataset

We slightly modified the file structure of Spaces dataset in order to determine the plane placement and split train/test sets.

Using your own images.

Running NeX on your own images. You need to install COLMAP on your machine.

Then, put your images into a directory following this structure

<scene_name>
|-- images
     | -- image_name1.jpg
     | -- image_name2.jpg
     ...

The training code will automatically prepare a scene for you. You may have to tune planes.txt to get better reconstruction (see dataset explaination)

Training

Run with the paper's config

python train.py -scene ${PATH_TO_SCENE} -model_dir ${MODEL_TO_SAVE_CHECKPOINT} -http

This implementation uses scikit-image to resize images during training by default. The results and scores in the paper are generated using OpenCV's resize function. If you want the same behavior, please add -cv2resize argument.

Note that this code is tested on an Nvidia V100 32GB and 4x RTX 2080Ti GPU.

For a GPU/GPUs with less memory (e.g., a single RTX 2080Ti), you can run using the following command:

python train.py -scene ${PATH_TO_SCENE} -model_dir ${MODEL_TO_SAVE_CHECKPOINT} -http -layers 12 -sublayers 6 -hidden 256

Note that when your GPU runs ouut of memeory, you can try reducing the number of layers, sublayers, and sampled rays.

Rendering

To generate a WebGL viewer and a video result.

python train.py -scene ${scene} -model_dir ${MODEL_TO_SAVE_CHECKPOINT} -predict -http

Video rendering

To generate a video that matches the real forward-facing rendering path, add -nice_llff argument, or -nice_shiny for shiny dataset

Citation

@inproceedings{Wizadwongsa2021NeX,
    author = {Wizadwongsa, Suttisak and Phongthawee, Pakkapon and Yenphraphai, Jiraphon and Suwajanakorn, Supasorn},
    title = {NeX: Real-time View Synthesis with Neural Basis Expansion},
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
    year = {2021},
}

Visit us 🦉

Vision & Learning Laboratory VISTEC - Vidyasirimedhi Institute of Science and Technology

PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022