A library for implementing Decentralized Graph Neural Network algorithms.

Overview

decentralized-gnn

A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. Developed code supports the publication p2pGNN: A Decentralized Graph Neural Network for Node Classification in Peer-to-Peer Networks.

Quick Start

To generate a local instance of a decentralized learning device:

from decentralized.devices import GossipDevice
from decentralized.mergers import SlowMerge
from learning.nn import MLP
node = ... # a node identifier object (can be any object)
features = ... # feature vector, should have the same length for each device
labels = ... # one hot encoding of class labels, zeroes if no label is known
predictor = MLP(features.shape[0], labels.shape[0])  # or load a pretrained model with
device = GossipDevice(node, predictor, features, labels, gossip_merge=SlowMerge)

In this code, the type of the device (GossipDevice)and the variable merge protocol (SlowMerge) work together to define a decentralized learning seting for a Graph Neural Network that runs on and takes account of unstructured peer-to-peer links of uncertain availability.

Then, when possible (e.g. at worst, whenever devices send messages to the others for other reasons) perform the following information exchange scheme between linked devices u and v:

send = u.send()
receive = v.receive(u.name, send)
u.ack(v.name, receive)

🛠️ Simulations

Simulations on many devices automatically generated by existing datasets can be easily set up and run per the following code:

from decentralized.devices import GossipDevice
from decentralized.mergers import AvgMerge
from decentralized.simulation import create_network

dataset_name = ... # "cora", "citeseer" or "pubmed"
network, test_labels = create_network(dataset_name, 
                                      GossipDevice,
                                      pretrained=False,
                                      gossip_merge=AvgMerge,
                                      gossip_pull=False,
                                      seed=0)
for epoch in range(800):
    network.round()
    accuracy_base = sum(1. if network.devices[u].predict(False) == label else 0 for u, label in test_labels.items()) / len(test_labels)
    accuracy = sum(1. if network.devices[u].predict() == label else 0 for u, label in test_labels.items()) / len(test_labels)
    print(f"Epoch {epoch} \t Acc {accuracy:.3f} \t Base acc {accuracy_base:.3f}")

In the above code, datasets are automatically downloaded using DGL's interface. Then, devices are instantiated given desired setting preferences.

⚠️ Some merge schemes take up a lot of memory to simulate.

📓 Citation

TBD
Owner
Multimedia Knowledge and Social Analytics Lab
MKLab is part of the Information Technologies Institute.
Multimedia Knowledge and Social Analytics Lab
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022