TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

Related tags

Deep LearningTilinGNN
Overview

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

Teaser Figure

About

The goal of our research problem is illustrated below: given a tile set (a) and a 2D region to be filled (b), we aim to produce a tiling (c) that maximally covers the interior of the given region without overlap or hole between the tile instances.

Dependencies:

This project is implemented in Python 3.7. You need to install the following packages to run our program.

  • Pytorch (tested with v1.2.0): compulsory, to manipulate the tensors on GUP, and to build up the networks.
  • Pytorch Geometric (tested with v1.3.2): compulsory, to build up the graph networks.
  • Numpy: compulsory, to manipulate the arrays and their computations.
  • Shapely (tested with v1.6.4): compulsory, for geometric computations such as collision detection.
  • PyQT5: compulsory, for rendering results, and display UI interface.
  • Minizinc: optional, install it only when you use IP solvers

Usage

We provide the following entry points for researchers to try our project:

  • Tiling Design by UI interface: From file Tiling-GUI.py, you can use our interface to draw a tiling region and preview the tiling results interactively.
  • Tiling a region of silhouette image: From file Tiling-Shape.py, you can use our pre-trained models, or IP solver, to solve a tiling problem by specifying a tiling region (from silhouette image) and a tile set.
  • Training for new tile Sets: You need the following steps to train a network for a new tile set.
    1. Following the file organization of existing tile sets inside the data folder, create a new folder with new files that describe your new tile sets. After that, you need to edit the global configuration file inputs/config.py to let the system know you your new tile set.
    2. Create a superset of candidate tile placements by running file tiling/gen_complete_super_graph.py, the generated files will be stored in the folder you created in Step (1).
    3. Generate training data of random shapes by running solver/ml_solver/gen_data.py, the data will be stored in the path recorded in file inputs/config.py.
    4. Start network training by running file solver/ml_solver/network_train.py.

Note

In this program, we have a global configuration file inputs/config.py, which plays a very important role to control the behavior of the programs, such as which tile set you want to work with, the stored location of the trained networks, or how many training data you will create, etc.

Keep Improving

If you met problems or any question on this project, contact us at [[email protected]] or [[email protected]]

Owner
PhD, The Chinese University of Hong Kong.
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
Pytorch Lightning 1.2k Jan 06, 2023
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023