End-to-End Referring Video Object Segmentation with Multimodal Transformers

Related tags

Deep LearningMTTR
Overview

End-to-End Referring Video Object Segmentation with Multimodal Transformers

License Framework

This repo contains the official implementation of the paper:


End-to-End Referring Video Object Segmentation with Multimodal Transformers

MTTR_preview.mp4

How to Run the Code

First, clone this repo to your local machine using:

git clone https://github.com/mttr2021/MTTR.git

Dataset Requirements

A2D-Sentences

Follow the instructions here to download the dataset. Then, extract and organize the files inside your cloned repo directory as follows (note that only the necessary files are shown):

MTTR/
└── a2d_sentences/ 
    ├── Release/
    │   ├── videoset.csv  (videos metadata file)
    │   └── CLIPS320/
    │       └── *.mp4     (video files)
    └── text_annotations/
        ├── a2d_annotation.txt  (actual text annotations)
        ├── a2d_missed_videos.txt
        └── a2d_annotation_with_instances/ 
            └── */ (video folders)
                └── *.h5 (annotations files) 

###JHMDB-Sentences Follow the instructions here to download the dataset. Then, extract and organize the files inside your cloned repo directory as follows (note that only the necessary files are shown):

MTTR/
└── jhmdb_sentences/ 
    ├── Rename_Images/  (frame images)
    │   └── */ (action dirs)
    ├── puppet_mask/  (mask annotations)
    │   └── */ (action dirs)
    └── jhmdb_annotation.txt  (text annotations)

Refer-YouTube-VOS

Download the dataset from the competition's website here.

Note that you may be required to sign up to the competition in order to get access to the dataset. This registration process is free and short.

Then, extract and organize the files inside your cloned repo directory as follows (note that only the necessary files are shown):

MTTR/
└── refer_youtube_vos/ 
    ├── train/
    │   ├── JPEGImages/
    │   │   └── */ (video folders)
    │   │       └── *.jpg (frame image files) 
    │   └── Annotations/
    │       └── */ (video folders)
    │           └── *.png (mask annotation files) 
    ├── valid/
    │   └── JPEGImages/
    │       └── */ (video folders)
    │           └── *.jpg (frame image files) 
    └── meta_expressions/
        ├── train/
        │   └── meta_expressions.json  (text annotations)
        └── valid/
            └── meta_expressions.json  (text annotations)

Environment Installation

The code was tested on a Conda environment installed on Ubuntu 18.04. Install Conda and then create an environment as follows:

conda create -n mttr python=3.9.7 pip -y

conda activate mttr

  • Pytorch 1.10:

conda install pytorch==1.10.0 torchvision==0.11.1 -c pytorch -c conda-forge

Note that you might have to change the cudatoolkit version above according to your system's CUDA version.

  • Hugging Face transformers 4.11.3:

pip install transformers==4.11.3

  • COCO API (for mAP calculations):

pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

  • Additional required packages:

pip install h5py wandb opencv-python protobuf av einops ruamel.yaml timm joblib

conda install -c conda-forge pandas matplotlib cython scipy cupy

Running Configuration

The following table lists the parameters which can be configured directly from the command line.

The rest of the running/model parameters for each dataset can be configured in configs/DATASET_NAME.yaml.

Note that in order to run the code the path of the relevant .yaml config file needs to be supplied using the -c parameter.

Command Description
-c path to dataset configuration file
-rm running mode (train/eval)
-ws window size
-bs training batch size per GPU
-ebs eval batch size per GPU (if not provided, training batch size is used)
-ng number of GPUs to run on

Evaluation

The following commands can be used to reproduce the main results of our paper using the supplied checkpoint files.

The commands were tested on RTX 3090 24GB GPUs, but it may be possible to run some of them using GPUs with less memory by decreasing the batch-size -bs parameter.

A2D-Sentences

Window Size Command Checkpoint File mAP Result
10 python main.py -rm eval -c configs/a2d_sentences.yaml -ws 10 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 46.1
8 python main.py -rm eval -c configs/a2d_sentences.yaml -ws 8 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 44.7

JHMDB-Sentences

The following commands evaluate our A2D-Sentences-pretrained model on JHMDB-Sentences without additional training.

For this purpose, as explained in our paper, we uniformly sample three frames from each video. To ensure proper reproduction of our results on other machines we include the metadata of the sampled frames under datasets/jhmdb_sentences/jhmdb_sentences_samples_metadata.json. This file is automatically loaded during the evaluation process with the commands below.

To avoid using this file and force sampling different frames, change the seed and generate_new_samples_metadata parameters under MTTR/configs/jhmdb_sentences.yaml.

Window Size Command Checkpoint File mAP Result
10 python main.py -rm eval -c configs/jhmdb_sentences.yaml -ws 10 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 39.2
8 python main.py -rm eval -c configs/jhmdb_sentences.yaml -ws 8 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 36.6

Refer-YouTube-VOS

The following command evaluates our model on the public validation subset of Refer-YouTube-VOS dataset. Since annotations are not publicly available for this subset, our code generates a zip file with the predicted masks under MTTR/runs/[RUN_DATE_TIME]/validation_outputs/submission_epoch_0.zip. This zip needs to be uploaded to the competition server for evaluation. For your convenience we supply this zip file here as well.

Window Size Command Checkpoint File Output Zip J&F Result
12 python main.py -rm eval -c configs/refer_youtube_vos.yaml -ws 12 -bs 1 -ckpt CHECKPOINT_PATH -ng 8 Link Link 55.32

Training

First, download the Kinetics-400 pretrained weights of Video Swin Transformer from this link. Note that these weights were originally published in video swin's original repo here.

Place the downloaded file inside your cloned repo directory as MTTR/pretrained_swin_transformer/swin_tiny_patch244_window877_kinetics400_1k.pth.

Next, the following commands can be used to train MTTR as described in our paper.

Note that it may be possible to run some of these commands on GPUs with less memory than the ones mentioned below by decreasing the batch-size -bs or window-size -ws parameters. However, changing these parameters may also affect the final performance of the model.

A2D-Sentences

  • The command for the following configuration was tested on 2 A6000 48GB GPUs:
Window Size Command
10 python main.py -rm train -c configs/a2d_sentences.yaml -ws 10 -bs 3 -ng 2
  • The command for the following configuration was tested on 3 RTX 3090 24GB GPUs:
Window Size Command
8 python main.py -rm train -c configs/a2d_sentences.yaml -ws 8 -bs 2 -ng 3

Refer-YouTube-VOS

  • The command for the following configuration was tested on 4 A6000 48GB GPUs:
Window Size Command
12 python main.py -rm train -c configs/refer_youtube_vos.yaml -ws 12 -bs 1 -ng 4
  • The command for the following configuration was tested on 8 RTX 3090 24GB GPUs.
Window Size Command
8 python main.py -rm train -c configs/refer_youtube_vos.yaml -ws 8 -bs 1 -ng 8

Note that this last configuration was not mentioned in our paper. However, it is more memory efficient than the original configuration (window size 12) while producing a model which is almost as good (J&F of 54.56 in our experiments).

JHMDB-Sentences

As explained in our paper JHMDB-Sentences is used exclusively for evaluation, so training is not supported at this time for this dataset.

Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022