Data Augmentation with Variational Autoencoders

Overview



Documentation 	Status Downloads 	Status

Documentation

Pyraug

This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging contexts such as high dimensional and low sample size data.

Installation

To install the library from pypi.org run the following using pip

$ pip install pyraug

or alternatively you can clone the github repo to access to tests, tutorials and scripts.

$ git clone https://github.com/clementchadebec/pyraug.git

and install the library

$ cd pyraug
$ pip install .

Augmenting your Data

In Pyraug, a typical augmentation process is divided into 2 distinct parts:

  1. Train a model using the Pyraug's TrainingPipeline or using the provided scripts/training.py script
  2. Generate new data from a trained model using Pyraug's GenerationPipeline or using the provided scripts/generation.py script

There exist two ways to augment your data pretty straightforwardly using Pyraug's built-in functions.

Using Pyraug's Pipelines

Pyraug provides two pipelines that may be used to either train a model on your own data or generate new data with a pretrained model.

note: These pipelines are independent of the choice of the model and sampler. Hence, they can be used even if you want to access to more advanced features such as defining your own autoencoding architecture.

Launching a model training

To launch a model training, you only need to call a TrainingPipeline instance. In its most basic version the TrainingPipeline can be built without any arguments. This will by default train a RHVAE model with default autoencoding architecture and parameters.

>>> from pyraug.pipelines import TrainingPipeline
>>> pipeline = TrainingPipeline()
>>> pipeline(train_data=dataset_to_augment)

where dataset_to_augment is either a numpy.ndarray, torch.Tensor or a path to a folder where each file is a data (handled data formats are .pt, .nii, .nii.gz, .bmp, .jpg, .jpeg, .png).

More generally, you can instantiate your own model and train it with the TrainingPipeline. For instance, if you want to instantiate a basic RHVAE run:

>>> from pyraug.models import RHVAE
>>> from pyraug.models.rhvae import RHVAEConfig
>>> model_config = RHVAEConfig(
...    input_dim=int(intput_dim)
... ) # input_dim is the shape of a flatten input data
...   # needed if you did not provide your own architectures
>>> model = RHVAE(model_config)

In case you instantiate yourself a model as shown above and you did not provide all the network architectures (encoder, decoder & metric if applicable), the ModelConfig instance will expect you to provide the input dimension of your data which equals to n_channels x height x width x .... Pyraug's VAE models' networks indeed default to Multi Layer Perceptron neural networks which automatically adapt to the input data shape.

note: In case you have different size of data, Pyraug will reshape it to the minimum size min_n_channels x min_height x min_width x ...

Then the TrainingPipeline can be launched by running:

>>> from pyraug.pipelines import TrainingPipeline
>>> pipe = TrainingPipeline(model=model)
>>> pipe(train_data=dataset_to_augment)

At the end of training, the model weights models.pt and model config model_config.json file will be saved in a folder outputs/my_model/training_YYYY-MM-DD_hh-mm-ss/final_model.

Important: For high dimensional data we advice you to provide you own network architectures and potentially adapt the training and model parameters see documentation for more details.

Launching data generation

To launch the data generation process from a trained model, run the following.

>>> from pyraug.pipelines import GenerationPipeline
>>> from pyraug.models import RHVAE
>>> model = RHVAE.load_from_folder('path/to/your/trained/model') # reload the model
>>> pipe = GenerationPipeline(model=model) # define pipeline
>>> pipe(samples_number=10) # This will generate 10 data points

The generated data is in .pt files in dummy_output_dir/generation_YYYY-MM-DD_hh-mm-ss. By default, it stores batch data of a maximum of 500 samples.

Retrieve generated data

Generated data can then be loaded pretty easily by running

>>> import torch
>>> data = torch.load('path/to/generated_data.pt')

Using the provided scripts

Pyraug provides two scripts allowing you to augment your data directly with commandlines.

note: To access to the predefined scripts you should first clone the Pyraug's repository. The following scripts are located in scripts folder. For the time being, only RHVAE model training and generation is handled by the provided scripts. Models will be added as they are implemented in pyraug.models

Launching a model training:

To launch a model training, run

$ python scripts/training.py --path_to_train_data "path/to/your/data/folder" 

The data must be located in path/to/your/data/folder where each input data is a file. Handled image types are .pt, .nii, .nii.gz, .bmp, .jpg, .jpeg, .png. Depending on the usage, other types will be progressively added.

At the end of training, the model weights models.pt and model config model_config.json file will be saved in a folder outputs/my_model_from_script/training_YYYY-MM-DD_hh-mm-ss/final_model.

Launching data generation

Then, to launch the data generation process from a trained model, you only need to run

$ python scripts/generation.py --num_samples 10 --path_to_model_folder 'path/to/your/trained/model/folder' 

The generated data is stored in several .pt files in outputs/my_generated_data_from_script/generation_YYYY-MM-DD_hh_mm_ss. By default, it stores batch data of 500 samples.

Important: In the simplest configuration, default configurations are used in the scripts. You can easily override as explained in documentation. See tutorials for a more in depth example.

Retrieve generated data

Generated data can then be loaded pretty easily by running

>>> import torch
>>> data = torch.load('path/to/generated_data.pt')

Getting your hands on the code

To help you to understand the way Pyraug works and how you can augment your data with this library we also provide tutorials that can be found in examples folder:

Dealing with issues

If you are experiencing any issues while running the code or request new features please open an issue on github

Citing

If you use this library please consider citing us:

@article{chadebec_data_2021,
	title = {Data {Augmentation} in {High} {Dimensional} {Low} {Sample} {Size} {Setting} {Using} a {Geometry}-{Based} {Variational} {Autoencoder}},
	copyright = {All rights reserved},
	journal = {arXiv preprint arXiv:2105.00026},
  	arxiv = {2105.00026},
	author = {Chadebec, Clément and Thibeau-Sutre, Elina and Burgos, Ninon and Allassonnière, Stéphanie},
	year = {2021}
}

Credits

Logo: SaulLu

You might also like...
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

 An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

ConvMAE: Masked Convolution Meets Masked Autoencoders
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders
Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders

MultiMAE: Multi-modal Multi-task Masked Autoencoders Roman Bachmann*, David Mizrahi*, Andrei Atanov, Amir Zamir Website | arXiv | BibTeX Official PyTo

This is the official Pytorch implementation of
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Comments
  • It takes a long time to train the model

    It takes a long time to train the model

    I am trying to train a RHVAE model for data augmentation and the model starts training but it takes a long time training and do not see any results. I do not know if is an error from my dataset, computer or from the library. Could you help me?

    opened by mikel-hernandezj 2
  • Geodesics computation

    Geodesics computation

    It would be great to have a function to compute geodesics, given a trained model and two points in the latent space.

    The goal would be to allow the exploration of the latent space via geodesics, as visualised in Figure 2 of (Chadebec et al., 2021):

    Screenshot 2021-09-28 at 10 06 34 enhancement 
    opened by Virgiliok 2
  • riemann_tools

    riemann_tools

    Hi,

    In on of your example notebooks (geodesic_computation_example), you import the function Geodesic_autodiff from the package riemann_tools. I cannot find any mention of this package however. Could you perhaps provide some documentation on how to install/import the riemann_tools? Thank you in advance!

    Edit: removing the import solved the problem

    opened by VivienvV 0
Releases(v0.0.6)
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Image Captioning using CNN and Transformers

Image-Captioning Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder. In particulary, the architecture consists

24 Dec 28, 2022
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
deep_image_prior_extension

Code for "Is Deep Image Prior in Need of a Good Education?" Project page: https://jleuschn.github.io/docs.educated_deep_image_prior/. Supplementary Ma

riccardo barbano 7 Jan 09, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022