Cognate Detection Repository

Overview

Cognate Detection Repository

Details

This repository contains the data for two publications:

  1. Challenge Dataset of Cognates and False Friend Pairs from Indian Languages (LREC 2020)

  2. Harnessing Cross-lingual Features to Improve Cognate Detection for Low-resource Languages (COLING 2020)

Dataset

We release the dataset described in our LREC submission with this repository. Please find the datasets D1, D2, and D3 as described in the paper here in their respective folders.

From here, D1 and D2 can be combined to replicate our COLING 2020 experiments on Cognate Detection for Indian Languages. The ILCI Parallel corpus used for Machine Translation-based experiments described in the paper is not distributable and licenced by TDIL, Indian Government. Kindly request the parallel corpus data via the TDIL website to replicated these experiments.

D3 is only concerning the LREC 2020 paper as it is the data which contains False Friends for Indian Languages

Citing

Please use the following citation while citing the LREC 2020 work:

@inproceedings{kanojia-etal-2020-challenge,
    title = "Challenge Dataset of Cognates and False Friend Pairs from {I}ndian Languages",
    author = "Kanojia, Diptesh  and
      Kulkarni, Malhar  and
      Bhattacharyya, Pushpak  and
      Haffari, Gholamreza",
    booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
    month = may,
    year = "2020",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://aclanthology.org/2020.lrec-1.378",
    pages = "3096--3102",
    abstract = "Cognates are present in multiple variants of the same text across different languages (e.g., {``}hund{''} in German and {``}hound{''} in the English language mean {``}dog{''}). They pose a challenge to various Natural Language Processing (NLP) applications such as Machine Translation, Cross-lingual Sense Disambiguation, Computational Phylogenetics, and Information Retrieval. A possible solution to address this challenge is to identify cognates across language pairs. In this paper, we describe the creation of two cognate datasets for twelve Indian languages namely Sanskrit, Hindi, Assamese, Oriya, Kannada, Gujarati, Tamil, Telugu, Punjabi, Bengali, Marathi, and Malayalam. We digitize the cognate data from an Indian language cognate dictionary and utilize linked Indian language Wordnets to generate cognate sets. Additionally, we use the Wordnet data to create a False Friends{'} dataset for eleven language pairs. We also evaluate the efficacy of our dataset using previously available baseline cognate detection approaches. We also perform a manual evaluation with the help of lexicographers and release the curated gold-standard dataset with this paper.",
    language = "English",
    ISBN = "979-10-95546-34-4",
}

Please use the following citation while citing the COLING 2020 work:

@inproceedings{kanojia-etal-2020-harnessing,
    title = "Harnessing Cross-lingual Features to Improve Cognate Detection for Low-resource Languages",
    author = "Kanojia, Diptesh  and
      Dabre, Raj  and
      Dewangan, Shubham  and
      Bhattacharyya, Pushpak  and
      Haffari, Gholamreza  and
      Kulkarni, Malhar",
    booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
    month = dec,
    year = "2020",
    address = "Barcelona, Spain (Online)",
    publisher = "International Committee on Computational Linguistics",
    url = "https://aclanthology.org/2020.coling-main.119",
    doi = "10.18653/v1/2020.coling-main.119",
    pages = "1384--1395",
    abstract = "Cognates are variants of the same lexical form across different languages; for example {``}fonema{''} in Spanish and {``}phoneme{''} in English are cognates, both of which mean {``}a unit of sound{''}. The task of automatic detection of cognates among any two languages can help downstream NLP tasks such as Cross-lingual Information Retrieval, Computational Phylogenetics, and Machine Translation. In this paper, we demonstrate the use of cross-lingual word embeddings for detecting cognates among fourteen Indian Languages. Our approach introduces the use of context from a knowledge graph to generate improved feature representations for cognate detection. We, then, evaluate the impact of our cognate detection mechanism on neural machine translation (NMT), as a downstream task. We evaluate our methods to detect cognates on a challenging dataset of twelve Indian languages, namely, Sanskrit, Hindi, Assamese, Oriya, Kannada, Gujarati, Tamil, Telugu, Punjabi, Bengali, Marathi, and Malayalam. Additionally, we create evaluation datasets for two more Indian languages, Konkani and Nepali. We observe an improvement of up to 18{\%} points, in terms of F-score, for cognate detection. Furthermore, we observe that cognates extracted using our method help improve NMT quality by up to 2.76 BLEU. We also release our code, newly constructed datasets and cross-lingual models publicly.",
}
Owner
Diptesh Kanojia
Postdoctoral Research Fellow @ Centre for Translation Studies (CTS), University of Surrey.
Diptesh Kanojia
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022