Node-level Graph Regression with Deep Gaussian Process Models

Overview

Node-level Graph Regression with Deep Gaussian Process Models

Prerequests

our implementation is mainly based on tensorflow 1.x and gpflow 1.x:

python 3.x (3.7 tested)
conda install tensorflow-gpu==1.15
pip install keras==2.3.1
pip install gpflow==1.5
pip install gpuinfo

Besides, some basic packages like numpy are also needed. It's maybe easy to wrap the codes for TF2.0 and GPflow2, but it's not tested yet.

Specification

Source code and experiment result are both provided. Unzip two archive files before using experiment notebooks.

Files

  • dgp_graph/: cores codes of the DGPG model.
    • impl_parallel.py: a fast node-level computation parallelized implementation, invoked by all experiments.
    • my_op.py: some custom tensorflow operations used in the implementation.
    • impl.py: a basic loop-based implementation, easy to understand but not practical, leaving just for calibration.
  • data/: datasets.
  • doubly_stochastic_dgp/: codes from repository DGP
  • compatible/: codes to make the DGP source codes compatible with gpflow1.5.
  • gpflow_monitor/: monitoring tool for gpflow models, from this repo.
  • GRN inference: code and data for the GRN inference experiment.
  • demo_city45.ipynb: jupyter notebooks for city45 dataset experiment.
  • experiments.zip: jupyter notebooks for other experiments.
  • results.zip: contains original jupyter notebooks results. (exported as HTML files for archive)
  • run_toy.sh: shell script to run additional experiment.
  • toy_main.py: code for additional experiment (Traditional ML methods and DGPG with linear kernel).
  • ER-0.1.ipynb: example script for analyzing time-varying graph structures.

Experiments

The experiments are based on python src files and demonstrated by jupyter notebooks. The source of an experiment is under directory src/experiments.zip and the corresponding result is exported as a static HTML file stored in the directory results.zip. They are organized by dataset names:

  1. Synthetic Datasets

For theoretical analysis.

  • demo_toy_run1.ipynb

  • demo_toy_run2.ipynb

  • demo_toy_run3.ipynb

  • demo_toy_run4.ipynb

  • demo_toy_run5.ipynb

For graph signal analysis on time-varying graphs.

  • ER-0.05.ipynb

  • ER-0.2.ipynb

  • RWP-0.1.ipynb

  • RWP-0.2.ipynb

  • RWP-0.3.ipynb

  1. Small Datasets
  • demo_city45.ipynb
  • demo_city45_linear.ipynb (linear kernel)
  • demo_city45_baseline.ipynb (traditional regression methods)
  • demo_etex.ipynb
  • demo_etex_linear.ipynb
  • demo_etex_baseline.ipynb
  • demo_fmri.ipynb
  • demo_fmri_linear.ipynb
  • demo_fmri_baseline.ipynb
  1. Large Datasets (traffic flow prediction)
  • LA
    • demo_la_15min.ipynb
    • demo_la_30min.ipynb
    • demo_la_60min.ipynb
  • BAY
    • demo_bay_15min.ipynb
    • demo_bay_30min.ipynb
    • demo_bay_60min.ipynb
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022