This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

Related tags

Deep LearningVaxNeRF
Overview

VaxNeRF

Paper | Google Colab Open In Colab

This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

This codebase is implemented using JAX, building on JaxNeRF.

VaxNeRF provides very fast training and slightly higher scores compared to original (Jax)NeRF!!

fast

Installation

Please see the README of JaxNeRF.

Quick start

Training

# make a bounding volume voxel using Visual Hull
python visualhull.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil7/lego \
    --dilation 7 \
    --thresh 1. \
    --alpha_bkgd True

# train VaxNeRF
python train.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil7/lego \
    --train_dir logs/lego_vax_c800 \
    --num_coarse_samples 800 \
    --render_every 2500

Evaluation

python eval.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil7/lego \
    --train_dir logs/lego_vax_c800 \
    --num_coarse_samples 800

Try other NeRFs

Original NeRF

python train.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --train_dir logs/lego_c64f128 \
    --num_coarse_samples 64 \
    --num_fine_samples 128 \
    --render_every 2500

VaxNeRF with hierarchical sampling

# hierarchical sampling needs more dilated voxel
python visualhull.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil47/lego \
    --dilation 47 \
    --thresh 1. \
    --alpha_bkgd True

# train VaxNeRF
python train.py \
    --config configs/demo \
    --data_dir data/nerf_synthetic/lego \
    --voxel_dir data/voxel_dil47/lego \
    --train_dir logs/lego_vax_c64f128 \
    --num_coarse_samples 64 \
    --num_fine_samples 128 \
    --render_every 2500

Option details

Visual Hull

  • Use --dilation 11 / --dilation 51 for NSVF-Synthetic dataset for training VaxNeRF without / with hierarchical sampling.
  • The following options were used for the Lifestyle, Spaceship, Steamtrain scenes (included in the NSVF dataset) because these datasets do not have alpha channel.
    • Lifestyle: --thresh 0.95, Spaceship: --thresh 0.9, Steamtrain: --thresh 0.95

NeRFs

  • We used --small_lr_at_first option for original NeRF training on the Robot and Spaceship scenes to avoid local minimum.

Code modification from JaxNeRF

  • You can see the main difference between (Jax)NeRF (jaxnerf branch) and VaxNeRF (vaxnerf branch) here
  • The main branch (derived from the vaxnerf branch) contains the following features.
    • Support for original NeRF
    • Support for VaxNeRF with hierarchical sampling
    • Support for the NSVF-Synthetic dataset
    • Visualization of number of sampling points evaluated by MLP (VaxNeRF)
    • Automatic choice of the number of sampling points to be evaluated (VaxNeRF)

Citation

Please use the following bibtex for citations:

@misc{kondo2021vaxnerf,
      title={VaxNeRF: Revisiting the Classic for Voxel-Accelerated Neural Radiance Field}, 
      author={Naruya Kondo and Yuya Ikeda and Andrea Tagliasacchi and Yutaka Matsuo and Yoichi Ochiai and Shixiang Shane Gu},
      year={2021},
      eprint={2111.13112},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

and also cite the original NeRF paper and JaxNeRF implementation:

@inproceedings{mildenhall2020nerf,
  title={NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis},
  author={Ben Mildenhall and Pratul P. Srinivasan and Matthew Tancik and Jonathan T. Barron and Ravi Ramamoorthi and Ren Ng},
  year={2020},
  booktitle={ECCV},
}

@software{jaxnerf2020github,
  author = {Boyang Deng and Jonathan T. Barron and Pratul P. Srinivasan},
  title = {{JaxNeRF}: an efficient {JAX} implementation of {NeRF}},
  url = {https://github.com/google-research/google-research/tree/master/jaxnerf},
  version = {0.0},
  year = {2020},
}

Acknowledgement

We'd like to express deep thanks to the inventors of NeRF and JaxNeRF.

Have a good VaxNeRF'ed life!

Owner
naruya
DNG
naruya
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022