SMPLpix: Neural Avatars from 3D Human Models

Related tags

Deep Learningsmplpix
Overview
subject0_validation_poses.mp4

Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video.

SMPLpix: Neural Avatars from 3D Human Models

SMPLpix neural rendering framework combines deformable 3D models such as SMPL-X with the power of image-to-image translation frameworks (aka pix2pix models).

Please check our WACV 2021 paper or a 5-minute explanatory video for more details on the framework.

Important note: this repository is a re-implementation of the original framework, made by the same author after the end of internship. It does not contain the original Amazon multi-subject, multi-view training data and code, and uses full mesh rasterizations as inputs rather than point projections (as described here).

Demo

Description Link
Process a video into a SMPLpix dataset Open In Colab
Train SMPLpix Open In Colab

Prepare the data

demo_openpose_simplifyx

We provide the Colab notebook for preparing SMPLpix training dataset. This will allow you to create your own neural avatar given monocular video of a human moving in front of the camera.

Run demo training

We provide some preprocessed data which allows you to run and test the training pipeline right away:

git clone https://github.com/sergeyprokudin/smplpix
cd smplpix
python setup.py install
python smplpix/train.py --workdir='/content/smplpix_logs/' \
                        --data_url='https://www.dropbox.com/s/coapl05ahqalh09/smplpix_data_test_final.zip?dl=0'

Train on your own data

You can train SMPLpix on your own data by specifying the path to the root directory with data:

python smplpix/train.py --workdir='/content/smplpix_logs/' \
                        --data_dir='/path/to/data'

The directory should contain train, validation and test folders, each of which should contain input and output folders. Check the structure of the demo dataset for reference.

You can also specify various parameters of training via command line. E.g., to reproduce the results of the demo video:

python smplpix/train.py --workdir='/content/smplpix_logs/' \
                        --data_url='https://www.dropbox.com/s/coapl05ahqalh09/smplpix_data_test_final.zip?dl=0' \
                        --downsample_factor=2 \
                        --n_epochs=500 \
                        --sched_patience=2 \
                        --batch_size=4 \
                        --n_unet_blocks=5 \
                        --n_input_channels=3 \
                        --n_output_channels=3 \
                        --eval_every_nth_epoch=10

Check the args.py for the full list of parameters.

More examples

Animating with novel poses

subject0_test_poses.mp4

Left: poses from the test video sequence, right: SMPLpix renders.

Rendering faces

deca_smplpix_test_renders.mp4

Left: FLAME face model inferred with DECA, middle: ground truth test video, right: SMPLpix render.

Thanks to Maria Paola Forte for providing the sequence.

Few-shot artistic neural style transfer

kabarov_animations.mp4

Left: rendered AMASS motion sequence, right: generated SMPLpix animations. See the explanatory video for details.

Credits to Alexander Kabarov for providing the training sketches.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{prokudin2021smplpix,
  title={SMPLpix: Neural Avatars from 3D Human Models},
  author={Prokudin, Sergey and Black, Michael J and Romero, Javier},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={1810--1819},
  year={2021}
}

License

See the LICENSE file.

Owner
Sergey Prokudin
Postdoctoral researcher in computer vision and machine learning
Sergey Prokudin
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
A library of scripts that interact with the PythonTurtle module to create games, drawings, and more

TurtleLib TurtleLib is a library of scripts that interact with the PythonTurtle module to create games, drawings, and more! Using the Scripts Copy or

1 Jan 15, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022