Rax is a Learning-to-Rank library written in JAX

Related tags

Deep Learningrax
Overview

🦖 Rax: Composable Learning to Rank using JAX

Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking losses and metrics to be used with JAX. It provides the following functionality:

  • Ranking losses (rax.*_loss): rax.softmax_loss, rax.pairwise_logistic_loss, ...
  • Ranking metrics (rax.*_metric): rax.mrr_metric, rax.ndcg_metric, ...
  • Transformations (rax.*_t12n): rax.approx_t12n, rax.gumbel_t12n, ...

Ranking

A ranking problem is different from traditional classification/regression problems in that its objective is to optimize for the correctness of the relative order of a list of examples (e.g., documents) for a given context (e.g., a query). Rax provides support for ranking problems within the JAX ecosystem. It can be used in, but is not limited to, the following applications:

  • Search: ranking a list of documents with respect to a query.
  • Recommendation: ranking a list of items given a user as context.
  • Question Answering: finding the best answer from a list of candidates.
  • Dialogue System: finding the best response from a list of responses.

Synopsis

In a nutshell, given the scores and labels for a list of items, Rax can compute various ranking losses and metrics:

import jax.numpy as jnp
import rax

scores = jnp.asarray([2.2, -1.3, 5.4])  # output of a model.
labels = jnp.asarray([1., 0., 0.])      # indicates doc 1 is relevant.

rax.ndcg_metric(scores, labels)         # computes a ranking metric.
rax.pairwise_hinge_loss(scores, labels) # computes a ranking loss.

All of the Rax losses and metrics are purely functional and compose well with standard JAX transformations. Additionally, Rax provides ranking-specific transformations so you can build new ranking losses. An example is rax.approx_t12n, which can be used to transform any (non-differentiable) ranking metric into a differentiable loss. For example:

loss_fn = rax.approx_t12n(rax.ndcg_metric)
loss_fn(scores, labels)            # differentiable approx ndcg loss.
jax.grad(loss_fn)(scores, labels)  # computes gradients w.r.t. scores.

Examples

See the examples/ directory for complete examples on how to use Rax.

You might also like...
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Rank 1st in the public leaderboard of ScanRefer (2021-03-18)
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

Code for
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

 COD-Rank-Localize-and-Segment (CVPR2021)
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Comments
  • Add Kendall's tau

    Add Kendall's tau

    Kendall's tau (https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient) is a ranking metric which we could add to Rax. We can reference the SciPy version of Kendall's tau (https://github.com/scipy/scipy/blob/v1.9.0/scipy/stats/_stats_py.py#L5015-L5222) as inspiration or comparison for the Rax implementation.

    Expected usage:

    scores = jnp.array([0., 1., 2.])
    labels = jnp.array([1., 2., 0.])
    rax.kendalltau_metric(scores, labels)  # should produce Kendall's tau-b.
    
    enhancement 
    opened by rjagerman 0
Releases(v0.2.0)
Owner
Google
Google ❤️ Open Source
Google
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
Visual Question Answering in Pytorch

Visual Question Answering in pytorch /!\ New version of pytorch for VQA available here: https://github.com/Cadene/block.bootstrap.pytorch This repo wa

Remi 672 Jan 01, 2023
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022