Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

Overview

nvdiffrec

Teaser image

Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D Models, Materials, and Lighting From Images.

For differentiable marching tetrahedons, we have adapted code from NVIDIA's Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research.

Licenses

Copyright © 2022, NVIDIA Corporation. All rights reserved.

This work is made available under the Nvidia Source Code License.

For business inquiries, please contact [email protected]

Installation

Requires Python 3.6+, VS2019+, Cuda 11.3+ and PyTorch 1.10+

Tested in Anaconda3 with Python 3.9 and PyTorch 1.10

One time setup (Windows)

Install the Cuda toolkit (required to build the PyTorch extensions). We support Cuda 11.3 and above. Pick the appropriate version of PyTorch compatible with the installed Cuda toolkit. Below is an example with Cuda 11.3

conda create -n dmodel python=3.9
activate dmodel
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
pip install ninja imageio PyOpenGL glfw xatlas gdown
pip install git+https://github.com/NVlabs/nvdiffrast/
pip install --global-option="--no-networks" git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
imageio_download_bin freeimage

Every new command prompt

activate dmodel

Examples

Our approach is designed for high-end NVIDIA GPUs with large amounts of memory. To run on mid-range GPU's, reduce the batch size parameter in the .json files.

Simple genus 1 reconstruction example:

python train.py --config configs/bob.json

Visualize training progress (only supported on Windows):

python train.py --config configs/bob.json --display-interval 20

Multi GPU example (Linux only. Experimental: all results in the paper were generated using a single GPU), using PyTorch DDP

torchrun --nproc_per_node=4 train.py --config configs/bob.json

Below, we show the starting point and the final result. References to the right.

Initial guess Our result

The results will be stored in the out folder. The Spot and Bob models were created and released into the public domain by Keenan Crane.

Included examples

  • spot.json - Extracting a 3D model of the spot model. Geometry, materials, and lighting from image observations.
  • spot_fixlight.json - Same as above but assuming known environment lighting.
  • spot_metal.json - Example of joint learning of materials and high frequency environment lighting to showcase split-sum.
  • bob.json - Simple example of a genus 1 model.

Datasets

We additionally include configs (nerf_*.json, nerd_*.json) to reproduce the main results of the paper. We rely on third party datasets, which are courtesy of their respective authors. Please note that individual licenses apply to each dataset. To automatically download and pre-process all datasets, run the download_datasets.py script:

activate dmodel
cd data
python download_datasets.py

Below follows more information and instructions on how to manually install the datasets (in case the automated script fails).

NeRF synthetic dataset Our view interpolation results use the synthetic dataset from the original NeRF paper. To manually install it, download the NeRF synthetic dataset archive and unzip it into the nvdiffrec/data folder. This is required for running any of the nerf_*.json configs.

NeRD dataset We use datasets from the NeRD paper, which features real-world photogrammetry and inaccurate (manually annotated) segmentation masks. Clone the NeRD datasets using git and rescale them to 512 x 512 pixels resolution using the script scale_images.py. This is required for running any of the nerd_*.json configs.

activate dmodel
cd nvdiffrec/data/nerd
git clone https://github.com/vork/ethiopianHead.git
git clone https://github.com/vork/moldGoldCape.git
python scale_images.py

Server usage (through Docker)

  • Build docker image.
cd docker
./make_image.sh nvdiffrec:v1
  • Start an interactive docker container: docker run --gpus device=0 -it --rm -v /raid:/raid -it nvdiffrec:v1 bash

  • Detached docker: docker run --gpus device=1 -d -v /raid:/raid -w=[path to the code] nvdiffrec:v1 python train.py --config configs/bob.json

Owner
NVIDIA Research Projects
NVIDIA Research Projects
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022