利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

Overview

KeepAccounts_v2.0

KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。

作者: MickLife

Bilibili: https://space.bilibili.com/38626658

Github: https://github.com/MickLife/KeepAccounts_v2.0

程序和表格下载链接:https://pan.baidu.com/s/1trgfNS6RuXJwy_NWVSo74Q 提取码:84d3

v2.0更新内容

  1. 利用python脚本编写程序,自动合并微信、支付宝账单,节省了操作时间。
  2. 更新记账分类方法,使记账有助于改善你的消费习惯
  3. 更新Excel明细页和可视化页,增加数据透视表和数据透视图。

如何使用

第一步 下载账单

微信账单

  1. 进入手机版微信,选择 “我”,进入用户中心界面,然后点击 “支付” 选项;
  2. 点击 “钱包”,进入钱包界面后,点击右上角的 “账单” 按钮;
  3. 点击右上角“常见问题”,点击“下载账单”->“用于个人对账”;
  4. 自定义账单时间,然后点击 “下一步”;
  5. 填写要导出的邮箱(微信会把账单发送到你填写的邮箱),点击 “下一步”;
  6. 输入支付密码,提示申请已提交,微信官方会给你发送一条消息,里面有账单的解压码;
  7. 前往你的邮箱下载得到压缩包,用解压码解压得到 .csv 格式微信账单,导出成功。

支付宝账单

  1. 电脑浏览器中打开支付宝官网 https://www.alipay.com/
  2. 点击右上角“客户服务”->“自助服务”;
  3. 在“交易服务”中点击“交易记录”一项;
  4. 扫码登录;
  5. 选择交易时间,并选择下载 excel 格式,得到 .zip 压缩包(其实是 .csv 格式,这是一种更轻便的文本格式);
  6. 解压压缩包得到 .csv 格式的支付宝账单,导出成功。

备注: 商家用户请勿从商家中心导出,否则数据格式不同无法使用本程序导入账单。请按以上步骤或切换至个人版页面导出。

第二步 运行程序合并账单

  1. 将 KeepAccounts_v2.0.zip 解压,推荐解压至 D:\Program Files\;
  2. 运行 KeepAccounts_v2.0 目录下的 KeepAccounts.exe
  3. 根据提示,依次选择微信 csv 账单、支付宝 csv 账单和账本文件(自动记账2.0_源数据.xlsx);
  4. 程序会自动将微信和支付宝账单合并到你选择的账本文件。
  5. 运行成功后按任意键退出。

备注:

  • 程序会将账单中大部分中性支出、收入(如提现、退款)删除。
  • 小部分中性支出、收入会被程序识别,并在逻辑 2 标注 0,乘后金额会显示 0。
  • 由于算法的编写由个人完成,不能做到识别所有情况,如果一些中性支出、收入没能自动识别,请手动在源数据表格中将乘后金额改为 0 即可。

第三步 补充数据、标记类别

  1. 打开“自动记账2.0_源数据.xlsx”;
  2. 打开“明细”sheet页,在最后一行追加其他收入和支出数据(如现金、银行卡、校园卡、余额宝等消费情况);
  3. 在最后两列的下拉列表中选择类别;
  4. 填写时注意,“月份、乘后金额、类别标记1、类别标记2”为必填项,其他可视情况填写。
  5. 追加数据后一定要保存

第四步 查看可视化图表

  1. 打开“自动记账2.0_可视化.xlsx”前,最好不要关闭源数据表格;

  2. 打开“自动记账2.0_可视化.xlsx”;(如果提示各种安全警告和更新链接询问,请点击“允许更新、启用内容”之类的选项)

  3. 如果你是第一次打开这个表格,需要更新数据源连接属性。 更新步骤:

    a. 请选择任意数据透视表中的任意一个单元格,点击“数据透视表工具-分析”选项卡,点击“更新数据源”处的下拉菜单,点击“连接属性”

    b. 在“连接属性”对话框中,点击“定义”选项卡

    c. 点击连接文件路径右侧的“浏览”,定位到表格文件的路径,选择“自动记账2.0_数据源.xlsx”文件,点击确定

    d. 在选择表格的弹窗中选择“明细$”,点击确定;

    e. 点击确定,看到数据自动更新。

  4. 查看可视化图表,退出时记得保存。

备注: 所有数据透视表、数据透视图中的筛选按钮均可点击,可以根据需求自定义。


Q&A

如何自定义消费类型?

  1. 在“自动记账2.0_源数据.xlsx”文件的“消费类型2.0”sheet页修改类别;
  2. 消费类别会同步出现在明细页的下拉列表、可视化的数据透视图和透视表中;
  3. 第二行编辑后需在“公式”选项卡 - “名称管理器”中同步修改,否则二级下拉列表将失效。

备注:

  • 类别名称中勿包含空格、划线、标点符号等特殊字符,会导致bug
  • 如果不清楚背后的原理,请在B2:O12区域内编辑,不要新增行列
  • 请勿修改明细页的数据有效性公式,因为不使用INDIRECT公式改用直接引用会导致bug,下拉列表消失。
  • 如果修改后出现问题,请自行检索关键词,学习有关知识:数据有效性、二级下拉、INDIRECT函数、名称管理器。

打开可视化表格,数据没有更新怎么办?

答:第一次打开这个表格,需要更新数据源连接属性。后续打开时不必每次这样操作。如果你已经更新过连接属性,但数据仍没有更新,请右键数据透视表的任意单元格,点击“更新”。如果这样还是不行,请在数据透视表工具-分析选项卡中,点击刷新下面的小三角,点击“全部刷新”。

追加其他明细内容需要填写所有项吗?

答:“月份、乘后金额、类别标记1、类别标记2”为必填项,其他可视情况填写。

每月导入前需要删除上个月的明细吗?

答:不需要。程序会直接在明细页最后一行后附加新的数据。

第二年可以接着导入吗?

答:不可以,暂时还不支持筛选年份,因为不想增加工作量ㄒ_ㄒ。第二年就把表格copy一份,数据清空当作新表来记录吧!如果你有好的表格设计想法,欢迎私信与我交流呀。

怎么反馈bug或改进意见?

答:欢迎在B站私信 MickLife 反馈,一起携手改变世界!


附:Excel自动记账v1.0链接: 【Mick小课堂3】Excel自动化个人记账方案 表格分享 https://www.bilibili.com/video/BV145411Y7Bj

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision Project | PDF | Poster Fangyu Li, N. Dinesh Reddy, X

25 Dec 21, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022