Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

Overview

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset

Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

grafik

Paper available under this LINK

grafik

The training data split of the SMDD data can be downloaded from this LINK (please share your name, affiliation, and official email in the request form).

The testing data split of the SMDD data can be downloaded from: (to be uploaded)

The pretrained weight of MixFaceNet-MAD model on SMDD training data can be downloaded from this LINK (please share your name, affiliation, and official email in the request form).

Data preparation

Our face data is preprocessed by the face detection and cropping. The implementation can be found in image_preprocess.py file. Moreover, for further training and test, the corresponding CSV files should be generated. The format of the dataset CSV file in our case is:

image_path,label
/image_dir/image_file_1.png, bonafide
/image_dir/image_file_2.png, bonafide
/image_dir/image_file_3.png, attack
/image_dir/image_file_4.png, attack

Experiment

The main.py file can be used for training and test:

  1. When training and test:
    python main.py \
      --train_csv_path 'train.csv' \
      --test_csv_path 'test.csv' \
      --model_path 'mixfacenet_SMDD.pth' \
      --is_train True \
      --is_test True \
      --output_dir 'output' \
    
  2. When test by using pretrained weight, first download the model and give the model path:
    python main.py \
      --test_csv_path 'test.csv' \
      --model_path 'mixfacenet_SMDD.pth' \
      --is_train False \
      --is_test True \
      --output_dir 'output' \
    

More detailed information can be found in main.py.

Citation:

If you use SMDD dataset, please cite the following paper:

@article{SMDD,
  author    = {Naser Damer and
               C{\'{e}}sar Augusto Fontanillo L{\'{o}}pez and
               Meiling Fang and
               No{\'{e}}mie Spiller and
               Minh Vu Pham and
               Fadi Boutros},
  title     = {Privacy-friendly Synthetic Data for the Development of Face Morphing
               Attack Detectors},
  journal   = {CoRR},
  volume    = {abs/2203.06691},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2203.06691},
  doi       = {10.48550/arXiv.2203.06691},
  eprinttype = {arXiv},
  eprint    = {2203.06691},
}

If you use the MixFaceNet-MAD, please cite the paper above and the original MixFaceNet paper (repo, paper):

@inproceedings{mixfacenet,
  author    = {Fadi Boutros and
               Naser Damer and
               Meiling Fang and
               Florian Kirchbuchner and
               Arjan Kuijper},
  title     = {MixFaceNets: Extremely Efficient Face Recognition Networks},
  booktitle = {International {IEEE} Joint Conference on Biometrics, {IJCB} 2021,
               Shenzhen, China, August 4-7, 2021},
  pages     = {1--8},
  publisher = {{IEEE}},
  year      = {2021},
  url       = {https://doi.org/10.1109/IJCB52358.2021.9484374},
  doi       = {10.1109/IJCB52358.2021.9484374},
}

License:

The dataset, the implementation, or trained models, use is restricted to research purpuses. The use of the dataset or the implementation/trained models for product development or product competetions (incl. NIST FRVT MORPH) is not allowed. This project is licensed under the terms of the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license. Copyright (c) 2020 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt.

Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022