PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Overview

PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

This code aims to reproduce results obtained in the paper "Visual Feature Attribution using Wasserstein GANs" (official repo, TensorFlow code)

Description

This repository contains the code to reproduce results for the paper cited above, where the authors presents a novel feature attribution technique based on Wasserstein Generative Adversarial Networks (WGAN). The code works for both synthetic (2D) and real 3D neuroimaging data, you can check below for a brief description of the two datasets.

anomaly maps examples

Here is an example of what the generator/mapper network should produce: ctrl-click on the below image to open the gifv in a new tab (one frame every 50 iterations, left: input, right: anomaly map for synthetic data at iteration 50 * (its + 1)).

anomaly maps examples

Synthetic Dataset

"Data: In order to quantitatively evaluate the performance of the examined visual attribution methods, we generated a synthetic dataset of 10000 112x112 images with two classes, which model a healthy control group (label 0) and a patient group (label 1). The images were split evenly across the two categories. We closely followed the synthetic data generation process described in [31][SubCMap: Subject and Condition Specific Effect Maps] where disease effects were studied in smaller cohorts of registered images. The control group (label 0) contained images with ran- dom iid Gaussian noise convolved with a Gaussian blurring filter. Examples are shown in Fig. 3. The patient images (label 1) also contained the noise, but additionally exhib- ited one of two disease effects which was generated from a ground-truth effect map: a square in the centre and a square in the lower right (subtype A), or a square in the centre and a square in the upper left (subtype B). Importantly, both dis- ease subtypes shared the same label. The location of the off-centre squares was randomly offset in each direction by a maximum of 5 pixels. This moving effect was added to make the problem harder, but had no notable effect on the outcome."

image

ADNI Dataset

Currently we only implemented training on synthetic dataset, we will work on implement training on ADNI dataset asap (but pull requests are welcome as always), we put below ADNI dataset details for sake of completeness.

"We selected 5778 3D T1-weighted MR images from 1288 subjects with either an MCI (label 0) or AD (label 1) diagnosis from the ADNI cohort. 2839 of the images were acquired using a 1.5T magnet, the remainder using a 3T magnet. The subjects are scanned at regular intervals as part of the ADNI study and a number of subjects converted from MCI to AD over the years. We did not use these cor- respondences for training, however, we took advantage of it for evaluation as will be described later. All images were processed using standard operations available in the FSL toolbox [52][Advances in functional and structural MR image analysis and implementation as FSL.] in order to reorient and rigidly register the images to MNI space, crop them and correct for field inhomogeneities. We then skull-stripped the images using the ROBEX algorithm [24][Robust brain extraction across datasets and comparison with publicly available methods]. Lastly, we resampled all images to a resolution of 1.3 mm 3 and nor- malised them to a range from -1 to 1. The final volumes had a size of 128x160x112 voxels."

"Data used in preparation of this article were obtained from the Alzheimers disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf"

Usage

Training

To train the WGAN on this task, cd into this repo's src root folder and execute:

$ python train.py

This script takes the following command line options:

  • dataset_root: the root directory where tha dataset is stored, default to '../dataset'

  • experiment: directory in where samples and models will be saved, default to '../samples'

  • batch_size: input batch size, default to 32

  • image_size: the height / width of the input image to network, default to 112

  • channels_number: input image channels, default to 1

  • num_filters_g: number of filters for the first layer of the generator, default to 16

  • num_filters_d: number of filters for the first layer of the discriminator, default to 16

  • nepochs: number of epochs to train for, default to 1000

  • d_iters: number of discriminator iterations per each generator iter, default to 5

  • learning_rate_g: learning rate for generator, default to 1e-3

  • learning_rate_d: learning rate for discriminator, default to 1e-3

  • beta1: beta1 for adam. default to 0.0

  • cuda: enables cuda (store True)

  • manual_seed: input for the manual seeds initializations, default to 7

Running the command without arguments will train the models with the default hyperparamters values (producing results shown above).

Models

We ported all models found in the original repository in PyTorch, you can find all implemented models here: https://github.com/orobix/Visual-Feature-Attribution-Using-Wasserstein-GANs-Pytorch/tree/master/src/models

Useful repositories and code

  • vagan-code: Reposiory for the reference paper from its authors

  • ganhacks: Starter from "How to Train a GAN?" at NIPS2016

  • WassersteinGAN: Code accompanying the paper "Wasserstein GAN"

  • wgan-gp: Pytorch implementation of Paper "Improved Training of Wasserstein GANs".

  • c3d-pytorch: Model used as discriminator in the reference paper

  • Pytorch-UNet: Model used as genertator in this repository

  • dcgan: Model used as discriminator in this repository

.bib citation

cite the paper as follows (copied-pasted it from arxiv for you):

@article{DBLP:journals/corr/abs-1711-08998,
  author    = {Christian F. Baumgartner and
               Lisa M. Koch and
               Kerem Can Tezcan and
               Jia Xi Ang and
               Ender Konukoglu},
  title     = {Visual Feature Attribution using Wasserstein GANs},
  journal   = {CoRR},
  volume    = {abs/1711.08998},
  year      = {2017},
  url       = {http://arxiv.org/abs/1711.08998},
  archivePrefix = {arXiv},
  eprint    = {1711.08998},
  timestamp = {Sun, 03 Dec 2017 12:38:15 +0100},
  biburl    = {http://dblp.org/rec/bib/journals/corr/abs-1711-08998},
  bibsource = {dblp computer science bibliography, http://dblp.org}
}

License

This project is licensed under the MIT License

Copyright (c) 2018 Daniele E. Ciriello, Orobix Srl (www.orobix.com).

Owner
Orobix
Orobix
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023