Deep Learning as a Cloud API Service.

Overview

Deep API

Deep Learning as Cloud APIs.

This project provides pre-trained deep learning models as a cloud API service. A web interface is available as well.

Quick Start

Python 3:

$ pip3 install -r requirements.txt
$ python main.py

Anaconda:

$ conda env create -f environment.yml
$ conda activate cloudapi
$ python main.py

Using Docker:

docker run -p 8080:8080 wuhanstudio/deep-api

Navigate to https://localhost:8080

API Client

It's possible to get predictions by sending a POST request to http://127.0.0.1:8080/vgg16_cifar10.

Using curl:

```
export IMAGE_FILE=test/cat.jpg
(echo -n '{"file": "'; base64 $IMAGE_FILE; echo '"}') | \
curl -H "Content-Type: application/json" \
     -d @- http://127.0.0.1:8080/vgg16_cifar10
```

Using Python:

def classification(url, file):
    # Load the input image and construct the payload for the request
    image = Image.open(file)
    buff = BytesIO()
    image.save(buff, format="JPEG")

    data = {'file': base64.b64encode(buff.getvalue()).decode("utf-8")}
    return requests.post(url, json=data).json()

res = classification('http://127.0.0.1:8080/vgg', 'cat.jpg')

This python script is available in the test folder. You should see prediction results by running python3 minimal.py:

cat            0.99804
deer           0.00156
truck          0.00012
airplane       0.00010
dog            0.00009
bird           0.00005
ship           0.00003
frog           0.00001
horse          0.00001
automobile     0.00001

Concurrent clients

Sending 5 concurrent requests to the api server:

$ python3 multi-client.py --num_workers 5 cat.jpg

You should see the result:

----- start -----
Sending requests
Sending requests
Sending requests
Sending requests
Sending requests
------ end ------
Concurrent Requests: 5
Total Runtime: 2.441638708114624

Full APIs

Post URLs:

Model Dataset Post URL
VGG-16 Cifar10 http://127.0.0.1:8080/vgg16_cifar10
VGG-16 ImageNet http://127.0.0.1:8080/vgg16
Resnet-50 ImageNet http://127.0.0.1:8080/resnet50
Inception v3 ImageNet http://127.0.0.1:8080/inceptionv3

Post Data (JSON):

{
  "file": ""
}

Query Parameters:

Name Type Default Value
top integer 10 One of [1, 3, 5, 10], top=5 returns top 5 predictions.
no-prob integer 0 no-prob=1 returns labels without probabilities. no-prob=0 returns labels and probabilities.

Example post urls (returns top 10 predictions with probabilities):

http://127.0.0.1:8080/vgg16?top=10&no-prob=0

Returns (JSON):

Key Value
success True / False
Predictions Array of prediction results, each element contains {"labels": "cat", "probability": 0.99}
error The error message if any

Example returned json:

{
  "success": true,
  "predictions": [
    {
      "label": "cat",
      "probability": 0.9996376037597656
    },
    {
      "label": "dog",
      "probability": 0.0002855948405340314
    },
    {
      "label": "deer",
      "probability": 0.000021985460989526473
    },
    {
      "label": "bird",
      "probability": 0.000021391952031990513
    },
    {
      "label": "horse",
      "probability": 0.000013297495570441242
    },
    {
      "label": "airplane",
      "probability": 0.000006046993803465739
    },
    {
      "label": "ship",
      "probability": 0.0000044226785576029215
    },
    {
      "label": "frog",
      "probability": 0.0000036349929359857924
    },
    {
      "label": "truck",
      "probability": 0.0000035354278224986047
    },
    {
      "label": "automobile",
      "probability": 0.000002384880417594104
    }
  ],
}

References

You might also like...
 Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Deploy a ML inference service on a budget in less than 10 lines of code.
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Space-event-trace - Tracing service for spaceteam events
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Releases(v0.1.0)
  • v0.1.0(Oct 26, 2021)

    Deep Learning as a Cloud API Service that supports:

    • Pretrained VGG16 model on Cifar10 dataset
    • Pretrained VGG16 model on ImageNet dataset
    • Pretrained Resnet50 model on ImageNet dataset
    • Pretrained Inceptionv3 model on ImageNet dataset
    • Automatic python client code generation
    • Automatic curl client code generation
    • A web interface for the api service

    A minimal version is deployed here:

    http://api.wuhanstudio.uk/

    Source code(tar.gz)
    Source code(zip)
Owner
Wu Han
Ph.D. Student at the University of Exeter in the U.K. for Autonomous System Security. Prior research experience at RT-Thread, LAIX, Xilinx.
Wu Han
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
Implementing a simplified copy of Shazam application from scratch using MinHashing and LSH.

Building Shazam from scratch In this repository we tried to implement a simplified copy of the Shazam application able to tell you the name of a song

Arturo Ghinassi 0 Nov 17, 2022