deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

Overview

deep-table

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

Design

Architecture

As shown below, each pretraining/fine-tuning model is decomposed into two modules: Encoder and Head.

Encoder

Encoder has Embedding and Backbone.

  • Embedding makes continuous/categorical features tokenized or simply normalized.
  • Backbone processes the tokenized features.

Pretraining/Fine-tuning Head

Pretraining/Fine-tuning Head uses Encoder module for training.

Implemented Methods

Available Modules

Encoder - Embedding

  • FeatureEmbedding
  • TabTransformerEmbedding

Encoder - Backbone

  • MLPBackbone
  • FTTransformerBackbone
  • SAINTBackbone

Model - Head

  • MLPHeadModel

Model - Pretraining

  • DenoisingPretrainModel
  • SAINTPretrainModel
  • TabTransformerPretrainModel
  • VIMEPretrainModel

How To Use

Step 0. Install

python setup.py install

# Installation with pip
pip install -e .

Step 1. Define config.json

You have to define three configs at least.

  1. encoder
  2. model
  3. trainer

Minimum configurations are as follows:

from omegaconf import OmegaConf

encoder_config = OmegaConf.create({
    "embedding": {
        "name": "FeatureEmbedding",
    },
    "backbone": {
        "name": "FTTransformerBackbone",
    }
})

model_config = OmegaConf.create({
    "name": "MLPHeadModel"
})

trainer_config = OmegaConf.create({
    "max_epochs": 1,
})

Other parameters can be changed also by config.json if you want.

Step 2. Define Datamodule

from deep_table.data.data_module import TabularDatamodule


datamodule = TabularDatamodule(
    train=train_df,
    validation=val_df,
    test=test_df,
    task="binary",
    dim_out=1,
    categorical_cols=["education", "occupation", ...],
    continuous_cols=["age", "hours-per-week", ...],
    target=["income"],
    num_categories=110,
)

Step 3. Run Training

>> {'accuracy': array([0.8553...]), 'AUC': array([0.9111...]), 'F1 score': array([0.9077...]), 'cross_entropy': array([0.3093...])} ">
from deep_table.estimators.base import Estimator
from deep_table.utils import get_scores


estimator = Estimator(
    encoder_config,      # Encoder architecture
    model_config,        # model settings (learning rate, scheduler...)
    trainer_config,      # training settings (epoch, gpu...)
)

estimator.fit(datamodule)
predict = estimator.predict(datamodule.dataloader(split="test"))
get_scores(predict, target, task="binary")
>>> {'accuracy': array([0.8553...]),
     'AUC': array([0.9111...]),
     'F1 score': array([0.9077...]),
     'cross_entropy': array([0.3093...])}

If you want to train a model with pretraining, write as follows:

from deep_table.estimators.base import Estimator
from deep_table.utils import get_scores


pretrain_model_config = OmegaConf.create({
    "name": "SAINTPretrainModel"
})

pretrain_model = Estimator(encoder_config, pretrain_model_config, trainer_config)
pretrain_model.fit(datamodule)

estimator = Estimator(encoder_config, model_config, trainer_config)
estimator.fit(datamodule, from_pretrained=pretrain_model)

See notebooks/train_adult.ipynb for more details.

Custom Datasets

You can use your own datasets.

  1. Prepare datasets and create DataFrame
  2. Preprocess DataFrame
  3. Create your own datamodules using TabularDatamodule

Example code is shown below.

import pandas as pd

import os,sys; sys.path.append(os.path.abspath(".."))
from deep_table.data.data_module import TabularDatamodule
from deep_table.preprocess import CategoryPreprocessor


# 0. Prepare datasets and create DataFrame
iris = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv')

# 1. Preprocessing pd.DataFrame
category_preprocesser = CategoryPreprocessor(categorical_columns=["species"], use_unk=False)
iris = category_preprocesser.fit_transform(iris)

# 2. TabularDatamodule
datamodule = TabularDatamodule(
    train=iris.iloc[:20],
    val=iris.iloc[20:40],
    test=iris.iloc[40:],
    task="multiclass",
    dim_out=3,
    categorical_columns=[],
    continuous_columns=["sepal_length", "sepal_width", "petal_length", "petal_width"],
    target=["species"],
    num_categories=0,
)

See notebooks/custom_dataset.ipynb for the full training example.

Custom Models

You can also use your Embedding/Backbone/Model. Set arguments as shown below.

estimator = Estimator(
    encoder_config, model_config, trainer_config,
    custom_embedding=YourEmbedding, custom_backbone=YourBackbone, custom_model=YourModel
)

If custom models are set, the attributes name in corresponding configs will be overwritten.

See notebooks/custom_model.ipynb for more details.

UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
frida工具的缝合怪

fridaUiTools fridaUiTools是一个界面化整理脚本的工具。新人的练手作品。参考项目ZenTracer,觉得既然可以界面化,那么应该可以把功能做的更加完善一些。跨平台支持:win、mac、linux 功能缝合怪。把一些常用的frida的hook脚本简单统一输出方式后,整合进来。并且

diveking 997 Jan 09, 2023
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021