The easiest tool for extracting radiomics features and training ML models on them.

Overview


ClassyRadiomics

License CI Build codecov

Simple pipeline for experimenting with radiomics features

Installation

git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git
cd classrad
pip install -e .

Example - Hydronephrosis detection from CT images:

Extract radiomics features and save them to CSV table

df = pd.read_csv(table_dir / "paths.csv")
extractor = FeatureExtractor(
    df=df,
    out_path=(table_dir / "features.csv"),
    image_col="img_path",
    mask_col="seg_path",
    verbose=True,
)
extractor.extract_features()

Create a dataset from the features table

feature_df = pd.read_csv(table_dir / "features.csv")
data = Dataset(
    dataframe=feature_df,
    features=feature_cols,
    target=label_col="Hydronephrosis",
    task_name="Hydronephrosis detection"
)
data.cross_validation_split_test_from_column(
    column_name="cohort", test_value="control"
)

Select classifiers to compare

classifier_names = [
    "Gaussian Process Classifier",
    "Logistic Regression",
    "SVM",
    "Random Forest",
    "XGBoost",
]
classifiers = [MLClassifier(name) for name in classifier_names]

Create an evaluator to train and evaluate selected classifiers

evaluator = Evaluator(dataset=data, models=classifiers)
evaluator.evaluate_cross_validation()
evaluator.boxplot_by_class()
evaluator.plot_all_cross_validation()
evaluator.plot_test()
Comments
  • Preprocessing features fails during machine learning

    Preprocessing features fails during machine learning

    Describe the bug

    Trying to use Machine Learning in the self-hosted webapp, as well as in example_WORC.ipynb fails.

    Steps/Code to Reproduce

    import pandas as pd
    from pathlib import Path
    from autorad.external.download_WORC import download_WORCDatabase
    
    # Set where we will save our data and results
    base_dir = Path.cwd() / "autorad_tutorial"
    data_dir = base_dir / "data"
    result_dir = base_dir / "results"
    data_dir.mkdir(exist_ok=True, parents=True)
    result_dir.mkdir(exist_ok=True, parents=True)
    
    %load_ext autoreload
    %autoreload 2
    
    download data (it may take a few minutes)
    download_WORCDatabase(
    dataset="Desmoid",
    data_folder=data_dir,
    n_subjects=100,
    )
    
    from autorad.utils.preprocessing import get_paths_with_separate_folder_per_case
    
    # create a table with all the paths
    paths_df = get_paths_with_separate_folder_per_case(data_dir, relative=True)
    paths_df.sample(5)
    
    
    from autorad.data.dataset import ImageDataset
    from autorad.feature_extraction.extractor import FeatureExtractor
    import logging
    
    logging.getLogger().setLevel(logging.CRITICAL)
    
    image_dataset = ImageDataset(
        paths_df,
        ID_colname="ID",
        root_dir=data_dir,
    )
    
    # Let's take a look at the data, plotting random 10 cases
    image_dataset.plot_examples(n=10, window=None)
    
    extractor = FeatureExtractor(image_dataset, extraction_params="MR_default.yaml")
    feature_df = extractor.run()
    
    feature_df.head()
    
    label_df = pd.read_csv(data_dir / "labels.csv")
    label_df.sample(5)
    
    from autorad.data.dataset import FeatureDataset
    
    merged_feature_df = feature_df.merge(label_df, left_on="ID",
        right_on="patient_ID", how="left")
    feature_dataset = FeatureDataset(
        merged_feature_df,
        target="diagnosis",
        ID_colname="ID"
    )
    
    splits_path = result_dir / "splits.json"
    feature_dataset.split(method="train_val_test", save_path=splits_path)
    
    from autorad.models.classifier import MLClassifier
    from autorad.training.trainer import Trainer
    
    models = MLClassifier.initialize_default_sklearn_models()
    print(models)
    
    trainer = Trainer(
        dataset=feature_dataset,
        models=models,
        result_dir=result_dir,
        experiment_name="Fibromatosis_vs_sarcoma_classification",
    )
    trainer.run_auto_preprocessing(
            selection_methods=["boruta"],
            oversampling=False,
            )
    
    

    Expected Results

    Initialising the trainer and running preprocessing on the features

    Actual Results

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    Input In [15], in <cell line: 7>()
          1 trainer = Trainer(
          2     dataset=feature_dataset,
          3     models=models,
          4     result_dir=result_dir,
          5     experiment_name="Fibromatosis_vs_sarcoma_classification",
          6 )
    ----> 7 trainer.run_auto_preprocessing(
          8         selection_methods=["boruta"],
          9         oversampling=False,
         10         )
    
    File ~/AutoRadiomics/autorad/training/trainer.py:78, in Trainer.run_auto_preprocessing(self, oversampling, selection_methods)
         70 preprocessor = Preprocessor(
         71     normalize=True,
         72     feature_selection_method=selection_method,
         73     oversampling_method=oversampling_method,
         74 )
         75 try:
         76     preprocessed[selection_method][
         77         oversampling_method
    ---> 78     ] = preprocessor.fit_transform(self.dataset.data)
         79 except AssertionError:
         80     log.error(
         81         f"Preprocessing with {selection_method} and {oversampling_method} failed."
         82     )
    
    File ~/AutoRadiomics/autorad/preprocessing/preprocessor.py:66, in Preprocessor.fit_transform(self, data)
         64 result_y = {}
         65 all_features = X.train.columns.tolist()
    ---> 66 X_train_trans, y_train_trans = self.pipeline.fit_transform(
         67     X.train, y.train
         68 )
         69 self.selected_features = self.pipeline["select"].selected_features(
         70     column_names=all_features
         71 )
         72 result_X["train"] = pd.DataFrame(
         73     X_train_trans, columns=self.selected_features
         74 )
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/sklearn/pipeline.py:434, in Pipeline.fit_transform(self, X, y, **fit_params)
        432 fit_params_last_step = fit_params_steps[self.steps[-1][0]]
        433 if hasattr(last_step, "fit_transform"):
    --> 434     return last_step.fit_transform(Xt, y, **fit_params_last_step)
        435 else:
        436     return last_step.fit(Xt, y, **fit_params_last_step).transform(Xt)
    
    File ~/AutoRadiomics/autorad/feature_selection/selector.py:47, in CoreSelector.fit_transform(self, X, y)
         44 def fit_transform(
         45     self, X: np.ndarray, y: np.ndarray
         46 ) -> tuple[np.ndarray, np.ndarray]:
    ---> 47     self.fit(X, y)
         48     return X[:, self.selected_columns], y
    
    File ~/AutoRadiomics/autorad/feature_selection/selector.py:124, in BorutaSelector.fit(self, X, y, verbose)
        122 with warnings.catch_warnings():
        123     warnings.simplefilter("ignore")
    --> 124     model.fit(X, y)
        125 self.selected_columns = np.where(model.support_)[0].tolist()
        126 if not self.selected_columns:
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/boruta/boruta_py.py:201, in BorutaPy.fit(self, X, y)
        188 def fit(self, X, y):
        189     """
        190     Fits the Boruta feature selection with the provided estimator.
        191 
       (...)
        198         The target values.
        199     """
    --> 201     return self._fit(X, y)
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/boruta/boruta_py.py:251, in BorutaPy._fit(self, X, y)
        249 def _fit(self, X, y):
        250     # check input params
    --> 251     self._check_params(X, y)
        252     self.random_state = check_random_state(self.random_state)
        253     # setup variables for Boruta
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/boruta/boruta_py.py:517, in BorutaPy._check_params(self, X, y)
        513 """
        514 Check hyperparameters as well as X and y before proceeding with fit.
        515 """
        516 # check X and y are consistent len, X is Array and y is column
    --> 517 X, y = check_X_y(X, y)
        518 if self.perc <= 0 or self.perc > 100:
        519     raise ValueError('The percentile should be between 0 and 100.')
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/sklearn/utils/validation.py:964, in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, estimator)
        961 if y is None:
        962     raise ValueError("y cannot be None")
    --> 964 X = check_array(
        965     X,
        966     accept_sparse=accept_sparse,
        967     accept_large_sparse=accept_large_sparse,
        968     dtype=dtype,
        969     order=order,
        970     copy=copy,
        971     force_all_finite=force_all_finite,
        972     ensure_2d=ensure_2d,
        973     allow_nd=allow_nd,
        974     ensure_min_samples=ensure_min_samples,
        975     ensure_min_features=ensure_min_features,
        976     estimator=estimator,
        977 )
        979 y = _check_y(y, multi_output=multi_output, y_numeric=y_numeric)
        981 check_consistent_length(X, y)
    
    File ~/miniconda3/envs/AutoRadiomics/lib/python3.10/site-packages/sklearn/utils/validation.py:746, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator)
        744         array = array.astype(dtype, casting="unsafe", copy=False)
        745     else:
    --> 746         array = np.asarray(array, order=order, dtype=dtype)
        747 except ComplexWarning as complex_warning:
        748     raise ValueError(
        749         "Complex data not supported\n{}\n".format(array)
        750     ) from complex_warning
    
    ValueError: could not broadcast input array from shape (60,1015) into shape (60,)
    
    opened by wagon-master 3
  • BUG: Time and memory inefficient concating in pandas on every case.

    BUG: Time and memory inefficient concating in pandas on every case.

    In the feature extraction, we concat a pd.DataFrame for every case. AFAIK this construction of a pd.DataFrame leads to a new memory allocation (and copying) every time, which is highly memory inefficient. Especially, when parallelized on many CPUs, combined with the already memory intensive forking in joblib this can lead to OOM-Events (and is slow of course). Wouldn't it be more convenient to return only the feature set, that is currently processed. https://github.com/pwoznicki/AutoRadiomics/blob/e475893c566de057d742f32da5cb9ece23a44eb0/autorad/feature_extraction/extractor.py#L109-L115 These are subsequently collected in results anyways: https://github.com/pwoznicki/AutoRadiomics/blob/e475893c566de057d742f32da5cb9ece23a44eb0/autorad/feature_extraction/extractor.py#L135-L144

    opened by laqua-stack 2
  • Feature/add inference mlflow

    Feature/add inference mlflow

    Major changes:

    • fixed training with autologging of training parameters, preprocessor and classifier in MLFlow
    • webapp: added Predict subpage for inference on a single case, giving out class probability and Shap explanation
    • webapp: moved all steps into subpages
    • webapp: added Getting started in the landing page

    Fixes:

    • webapp: fixed extraction params discarding Feature Names selected from Feature Classes
    opened by pwoznicki 1
  • example_WORC.ipynb not being up to date with the repository

    example_WORC.ipynb not being up to date with the repository

    Describe the bug

    In example_WORC.ipynb there are function calls that do not work due to code in the repository being changed while the example_WORC.ipynb code wasn't updated to reflect those changes

    Steps/Code to Reproduce

    import pandas as pd
    from pathlib import Path
    from autorad.external.download_WORC import download_WORCDatabase
    
    # Set where we will save our data and results
    base_dir = Path.cwd() / "autorad_tutorial"
    data_dir = base_dir / "data"
    result_dir = base_dir / "results"
    data_dir.mkdir(exist_ok=True, parents=True)
    result_dir.mkdir(exist_ok=True, parents=True)
    
    %load_ext autoreload
    %autoreload 2
    
    download data (it may take a few minutes)
    download_WORCDatabase(
    dataset="Desmoid",
    data_folder=data_dir,
    n_subjects=100,
    )
    
    
    
    from autorad.data.utils import get_paths_with_separate_folder_per_case  # 1
    
    # create a table with all the paths
    paths_df = get_paths_with_separate_folder_per_case(data_dir, relative=True)
    paths_df.sample(5)
    
    
    from autorad.data.dataset import ImageDataset
    from autorad.feature_extraction.extractor import FeatureExtractor
    import logging
    
    logging.getLogger().setLevel(logging.CRITICAL)
    
    image_dataset = ImageDataset(
        paths_df,
        ID_colname="ID",
        root_dir=data_dir,
    )
    
    # Let's take a look at the data, plotting random 10 cases
    image_dataset.plot_examples(n=10, window=None)
    
    extractor = FeatureExtractor(image_dataset, extraction_params="default_MR.yaml") # 2
    feature_df = extractor.run()
    
    

    Expected Results

    1: Importing the function get_paths_with_separate_folder_per_case

    2: Using default_MR.yaml as value for extraction_params

    Actual Results

    1:

    ---------------------------------------------------------------------------
    ModuleNotFoundError                       Traceback (most recent call last)
    Input In [7], in <cell line: 1>()
    ----> 1 from autorad.data.utils import get_paths_with_separate_folder_per_case
          3 # create a table with all the paths
          4 paths_df = get_paths_with_separate_folder_per_case(data_dir, relative=True)
    
    ModuleNotFoundError: No module named 'autorad.data.utils'
    

    2:

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    Input In [18], in <cell line: 1>()
    ----> 1 extractor = FeatureExtractor(image_dataset, extraction_params="default_MR.yaml")
          2 feature_df = extractor.run()
    
    File ~/AutoRadiomics/autorad/feature_extraction/extractor.py:41, in FeatureExtractor.__init__(self, dataset, feature_set, extraction_params, n_jobs)
         39 self.dataset = dataset
         40 self.feature_set = feature_set
    ---> 41 self.extraction_params = self._get_extraction_param_path(
         42     extraction_params
         43 )
         44 log.info(f"Using extraction params from {self.extraction_params}")
         45 self.n_jobs = set_n_jobs(n_jobs)
    
    File ~/AutoRadiomics/autorad/feature_extraction/extractor.py:55, in FeatureExtractor._get_extraction_param_path(self, extraction_params)
         53     result = default_extraction_param_dir / extraction_params
         54 else:
    ---> 55     raise ValueError(
         56         f"Extraction parameter file {extraction_params} not found."
         57     )
         58 return result
    
    ValueError: Extraction parameter file default_MR.yaml not found.
    

    Fix

    1: change from autorad.data.utils to from autorad.utils.preprocessing 2: change extractor = FeatureExtractor(image_dataset, extraction_params="default_MR.yaml") to extractor = FeatureExtractor(image_dataset, extraction_params="MR_default.yaml")

    opened by wagon-master 1
  • Bugfix/refactor

    Bugfix/refactor

    New features:

    • log feature dataset and splits in MLFlow
    • update docs & add getting-started

    Fixes:

    • fix evaluation in the web app
    • fix docs build in readthedocss
    opened by pwoznicki 0
  • Support various readers (Nibabel, ITK)

    Support various readers (Nibabel, ITK)

    Currently we use Nibabel for loading images. It works only for Nifti images, but a user may want to load a DICOM image, without converting it to Nifti.

    Consider using MONAI LoadImage() function that provides a common interface for loading both Nifti and DICOM images.

    enhancement 
    opened by pwoznicki 0
Releases(v0.2.2)
  • v0.2.2(Jul 30, 2022)

Owner
Piotr Woźnicki
Recently graduated medical doctor, working on medical image analysis.
Piotr Woźnicki
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022