SynNet - synthetic tree generation using neural networks

Related tags

Deep LearningSynNet
Overview

SynNet

This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can serve as both a synthesis planning tool and as a tool for synthesizable molecular design.

The method is described in detail in the publication "Amortized tree generation for bottom-up synthesis planning and synthesizable molecular design" [TODO add link to arXiv after publication] and summarized below.

Summary

Overview

We model synthetic pathways as tree structures called synthetic trees. A valid synthetic tree has one root node (the final product molecule) linked to purchasable building blocks (encoded as SMILES strings) via feasible reactions according to a list of discrete reaction templates (examples of templates encoded as SMARTS strings in data/rxn_set_hb.txt). At a high level, each synthetic tree is constructed one reaction step at a time in a bottom-up manner, starting from purchasable building blocks.

The model consists of four modules, each containing a multi-layer perceptron (MLP):

  1. An Action Type selection function that classifies action types among the four possible actions (“Add”, “Expand”, “Merge”, and “End”) in building the synthetic tree.
  2. A First Reactant selection function that predicts an embedding for the first reactant. A candidate molecule is identified for the first reactant through a k-nearest neighbors (k-NN) search from the list of potential building blocks.
  3. A Reaction selection function whose output is a probability distribution over available reaction templates, from which inapplicable reactions are masked (based on reactant 1) and a suitable template is then sampled using a greedy search.
  4. A Second Reactant selection function that identifies the second reactant if the sampled template is bi-molecular. The model predicts an embedding for the second reactant, and a candidate is then sampled via a k-NN search from the masked set of building blocks.

the model

These four modules predict the probability distributions of actions to be taken within a single reaction step, and determine the nodes to be added to the synthetic tree under construction. All of these networks are conditioned on the target molecule embedding.

Synthesis planning

This task is to infer the synthetic pathway to a given target molecule. We formulate this problem as generating a synthetic tree such that the product molecule it produces (i.e., the molecule at the root node) matches the desired target molecule.

For this task, we can take a molecular embedding for the desired product, and use it as input to our model to produce a synthetic tree. If the desired product is successfully recovered, then the final root molecule will match the desired molecule used to create the input embedding. If the desired product is not successully recovered, it is possible the final root molecule may still be similar to the desired molecule used to create the input embedding, and thus our tool can also be used for synthesizable analog recommendation.

the generation process

Synthesizable molecular design

This task is to optimize a molecular structure with respect to an oracle function (e.g. bioactivity), while ensuring the synthetic accessibility of the molecules. We formulate this problem as optimizing the structure of a synthetic tree with respect to the desired properties of the product molecule it produces.

To do this, we optimize the molecular embedding of the molecule using a genetic algorithm and the desired oracle function. The optimized molecule embedding can then be used as input to our model to produce a synthetic tree, where the final root molecule corresponds to the optimized molecule.

Setup instructions

Setting up the environment

You can use conda to create an environment containing the necessary packages and dependencies for running synth_net by using the provided YAML file:

conda env create -f env/synthenv.yml

If you update the environment and would like to save the updated environment as a new YAML file using conda, use:

conda env export > path/to/env.yml

Unit tests

To check that everything has been set-up correctly, you can run the unit tests from within the tests/. If starting in the main SynNet/ directory, you can run the unit tests as follows:

export PYTHONPATH=`pwd`:$PYTHONPATH
cd tests/
python -m unittest

You should get no errors if everything ran correctly.

Code Structure

The code is structured as follows:

synth_net/
├── data
│   └── rxn_set_hb.txt
├── environment.yml
├── LICENSE
├── README.md
├── scripts
│   ├── compute_embedding_mp.py
│   ├── compute_embedding.py
│   ├── generation_fp.py
│   ├── generation.py
│   ├── gin_supervised_contextpred_pre_trained.pth
│   ├── _mp_decode.py
│   ├── _mp_predict_beam.py
│   ├── _mp_predict_multireactant.py
│   ├── _mp_predict.py
│   ├── _mp_search_similar.py
│   ├── _mp_sum.py
│   ├── mrr.py
│   ├── optimize_ga.py
│   ├── predict-beam-fullTree.py
│   ├── predict_beam_mp.py
│   ├── predict-beam-reactantOnly.py
│   ├── predict_mp.py
│   ├── predict_multireactant_mp.py
│   ├── predict.py
│   ├── read_st_data.py
│   ├── sample_from_original.py
│   ├── search_similar.py
│   ├── sketch-synthetic-trees.py
│   ├── st2steps.py
│   ├── st_split.py
│   └── temp.py
├── setup.py
├── synth_net
│   ├── data_generation
│   │   ├── check_all_template.py
│   │   ├── filter_unmatch.py
│   │   ├── __init__.py
│   │   ├── make_dataset_mp.py
│   │   ├── make_dataset.py
│   │   ├── _mp_make.py
│   │   ├── _mp_process.py
│   │   └── process_rxn_mp.py
│   ├── __init__.py
│   ├── models
│   │   ├── act.py
│   │   ├── mlp.py
│   │   ├── prepare_data.py
│   │   ├── rt1.py
│   │   ├── rt2.py
│   │   └── rxn.py
│   └── utils
│       ├── data_utils.py
│       ├── ga_utils.py
│       └── __init__.py
└── tests
    ├── create-unittest-data.py
    └── test_DataPreparation.py

The model implementations can be found in synth_net/models/, with processing and analysis scripts located in scripts/.

Instructions

Before running anything, you need to add the root directory to the Python path. One option for doing this is to run the following command in the root SynNet directory:

export PYTHONPATH=`pwd`:$PYTHONPATH

Using pre-trained models

We have made available a set of pre-trained models at the following link. The pretrained models correspond to the Action, Reactant 1, Reaction, and Reactant 2 networks, trained on the Hartenfeller-Button dataset using radius 2, length 4096 Morgan fingerprints for the molecular node embeddings, and length 256 fingerprints for the k-NN search. For further details, please see the publication.

The models can be uncompressed with:

tar -zxvf hb_fp_2_4096_256.tar.gz

Synthesis Planning

To perform synthesis planning described in the main text: [TODO add checkpoints to prediction scripts // save trees periodically. otherwise just saves at end and is problematic of job times out]

python predict_multireactant_mp.py -n -1 --ncpu 36 --data test

This script will feed a list of molecules from the test data and save the decoded results (predicted synthesis trees) to synth_net/results/. One can use --help to see the instruction of each argument. Note: this file reads parameters from a directory, please specify the path to parameters previously.

Synthesizable Molecular Design

To perform synthesizable molecualr design, under synth_net/scripts/, run:

optimize_ga.py -i path/to/zinc.csv --radius 2 --nbits 4096 --num_population 128 --num_offspring 512 --num_gen 200 --ncpu 32 --objective gsk

This script uses a genetic algorithm to optimize molecular embeddings and returns the predicted synthetic trees for the optimized molecular embedding. One can use --help to see the instruction of each argument. If user wants to start from a checkpoint of previous run, run:

optimize_ga.py -i path/to/population.npy --radius 2 --nbits 4096 --num_population 128 --num_offspring 512 --num_gen 200 --ncpu 32 --objective gsk --restart

Note: the input file indictaed by -i is seed molecules in csv for initial run and numpy array of population for restarting run.

Train the model from scratch

Before training any models, you will first need to preprocess the set of reaction templates which you would like to use. You can use either a new set of reaction templates, or the provided Hartenfeller-Button (HB) set of reaction templates (see data/rxn_set_hb.txt). To preprocess a new dataset, you will need to:

  1. Preprocess the data to identify applicable reactants for each reaction template
  2. Generate the synthetic trees by random selection
  3. Split the synthetic trees into training, testing, and validation splits
  4. Featurize the nodes in the synthetic trees using molecular fingerprints
  5. Prepare the training data for each of the four networks

Once you have preprocessed a training set, you can begin to train a model by training each of the four networks separately (the Action, First Reactant, Reaction, and Second Reactant networks).

After training a new model, you can then use the trained model to make predictions and construct synthetic trees for a list given set of molecules.

You can also perform molecular optimization using a genetic algorithm.

Instructions for all of the aforementioned steps are described in detail below.

In addition to the aforementioned types of jobs, we have also provide below instructions for (1) sketching synthetic trees and (2) calculating the mean reciprocal rank of reactant 1.

Processing the data: reaction templates and applicable reactants

Given a set of reaction templates and a list of buyable building blocks, we first need to assign applicable reactants for each template. Under synth_net/synth_net/data_generation/, run:

python process_rxn_mp.py

This will save the reaction templates and their corresponding building blocks in a JSON file. Then, run:

python filter_unmatch.py 

This will filter out buyable building blocks which didn't match a single template.

Generating the synthetic path data by random selection

Under synth_net/synth_net/data_generation/, run:

python make_dataset_mp.py

This will generate synthetic path data saved in a JSON file. Then, to make the dataset more pharmaceutically revelant, we can change to synth_net/scripts/ and run:

python sample_from_original.py 

This will filter out the samples where the root node QED is less than 0.5, or randomly with a probability less than 1 - QED/0.5.

Splitting data into training, validation, and testing sets, and removing duplicates

Under synth_net/scripts/, run:

python st_split.py

The default split ratio is 6:2:2 for training, validation, and testing sets.

Featurizing data

Under synth_net/scripts/, run:

python st2steps.py -r 2 -b 4096 -d train

This will featurize the synthetic tree data into step-by-step data which can be used for training. The flag -r indicates the fingerprint radius, -b indicates the number of bits to use for the fingerprints, and -d indicates which dataset split to featurize.

Preparing training data for each network

Under synth_net/synth_net/models/, run:

python prepare_data.py --radius 2 --nbits 4096

This will prepare the training data for the networks.

Each is a training script and can be used as follows (using the action network as an example):

python act.py --radius 2 --nbits 4096

This will train the network and save the model parameters at the state with the best validation loss in a logging directory, e.g., act_hb_fp_2_4096_logs. One can use tensorboard to monitor the training and validation loss.

Sketching synthetic trees

To visualize the synthetic trees, run:

python scripts/sketch-synthetic-trees.py --file /pool001/whgao/data/synth_net/st_hb/st_train.json.gz --saveto ./ --nsketches 5 --actions 3

This will sketch 5 synthetic trees with 3 or more actions to the current ("./") directory (you can play around with these variables or just also leave them out to use the defaults).

Testing the mean reciprocal rank (MRR) of reactant 1

Under synth_net/scripts/, run:

python mrr.py --distance cosine
Comments
  • Unit Test Files

    Unit Test Files

    First off great work!

    The unit tests reference files that are ignored in .gitignore

    './data/states_0_train.npz'
    './data/st_hb_test.json.gz'
    './data/building_blocks_matched.csv.gz'
    

    can we add these to the repo so the unit tests can be run?

    opened by lilleswing 4
  • Running optimize_ga.py

    Running optimize_ga.py

    I'm trying to test everything is working in my setup by running

    python optimize_ga.py --radius 2 --nbits 4096 --num_population 128 --num_offspring 512 --num_gen 200 --ncpu 48
    

    It seems to run forever with the following output

    Using backend: pytorch
    Downloading gin_supervised_contextpred_pre_trained.pth from https://data.dgl.ai/dgllife/pre_trained/gin_supervised_contextpred.pth...
    Pretrained model loaded
    Downloading gin_supervised_contextpred_pre_trained.pth from https://data.dgl.ai/dgllife/pre_trained/gin_supervised_contextpred.pth...
    Pretrained model loaded
    Starting with 128 fps with 4096 bits
    mat1 and mat2 shapes cannot be multiplied (1x12292 and 12288x1200)
    mat1 and mat2 shapes cannot be multiplied (1x12292 and 12288x1200)
    mat1 and mat2 shapes cannot be multiplied (1x12292 and 12288x1200)
    mat1 and mat2 shapes cannot be multiplied (1x12292 and 12288x1200)
    ...
    mat1 and mat2 shapes cannot be multiplied (1x12292 and 12288x1200)
    mat1 and mat2 shapes cannot be multiplied (1x12292 and 12288x1200)
    Initial: 0.000 +/- 0.000
    Scores: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
     0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
     0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
     0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
     0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
     0. 0. 0. 0. 0. 0. 0. 0.]
    Top-3 Smiles: [None, None, None]
    

    How long should this run and is this output normal?

    opened by tkram01 3
  • add docs on `compute_embedding.py` needed for inference

    add docs on `compute_embedding.py` needed for inference

    hello (again),

    sorry that I am raising multiple issues. just want to make it easier for everyone else to start using this awesome work.

    i didn't a note about how one could compute molecular fingerprints / GNN embeddings for a dataset. only after some CTRL+F, i found that scripts/compute_embedding.py does it. https://github.com/wenhao-gao/SynNet/blob/master/scripts/compute_embedding.py

    so, it would be a good idea to add this to the README. I believe we need to do this step before running any inference.

    opened by linminhtoo 2
  • No mol_fp module in _mp_decode.py

    No mol_fp module in _mp_decode.py

    I run optimize_ga.py for my molecule optimization. But I got the error because no mol_fp module in _mp_decoe.py.

    Traceback (most recent call last):
      File "/home/sejeong/codes/SynNet/scripts/optimize_ga.py", line 207, in <module>
        [decode.mol_fp(smi, args.radius, args.nbits) for smi in starting_smiles]
      File "/home/sejeong/codes/SynNet/scripts/optimize_ga.py", line 207, in <listcomp>
        [decode.mol_fp(smi, args.radius, args.nbits) for smi in starting_smiles]
    AttributeError: module 'scripts._mp_decode' has no attribute 'mol_fp'
    

    So, I changed the mol_fp to mol_fp function in predict_utils.py.

    from syn_net.utils.predict_utils import mol_fp
    
                population = np.array(
                    [mol_fp(smi, args.radius, args.nbits) for smi in starting_smiles]
                ) 
    

    Then, I got the error like below.

    Traceback (most recent call last):
      File "/home/sejeong/codes/SynNet/scripts/optimize_ga.py", line 210, in <module>
        population = population.reshape((population.shape[0], population.shape[2]))
    IndexError: tuple index out of range
    

    Can you help me with this error?

    opened by SejeongPark8354 2
  • Errors in creating env and running unit tests.

    Errors in creating env and running unit tests.

    Hi,

    I'd like to use SynNet in my work. I have followed the instructions in the README to setup my environment.

    1. In the environment.ymlfile the name is rdkit not synthenv. As a result, source activate synthevn as instructed in the readme does not work. You may want to take a look at these.

    2. When I ran the unit tests, it gives me a few errors. I think it's originating from the incorrect path specifications. One of the errors I have got: FileNotFoundError: [Errno 2] No such file or directory: '/pool001/whgao/data/synth_net/st_hb/enamine_us_emb_gin.npy' I noticed that there are multiple pathways as such, which might make it difficult to use in future computations without having to change each and everyone of them.

    Will you be able to help me with these? Thanks!

    opened by geemi725 2
  • ZINC csv used by publication

    ZINC csv used by publication

    hello wenhao & rocio,

    I see that we have to provide path/to/zinc.csv to run the genetic algorithm (to replicate how it was done in the paper) https://github.com/wenhao-gao/SynNet#synthesizable-molecular-design-1

    optimize_ga.py -i path/to/zinc.csv --radius 2 --nbits 4096 --num_population 128 --num_offspring 512 --num_gen 200 --ncpu 32 --objective gsk
    

    is it possible to provide the exact zinc.csv that was used in the publication?

    Seeds are randomly sampled from the ZINC database (Sterling & Irwin, 2015)
    
    opened by linminhtoo 1
  • hardcoded paths in training `validation_step`

    hardcoded paths in training `validation_step`

    hello wenhao & rocio,

    the unittests are great and gives a great overview of how different modules should be run. however, I saw that in these lines, the path to the building block embeddings are hardcoded to the path on the HPC cluster. https://github.com/wenhao-gao/SynNet/blob/56917a668c1a6b633964e02eb53b717be0d1dd64/syn_net/models/mlp.py#L78-L89

    so, I am unable to make pytest pass, specifically:

    FAILED tests/test_Training.py::TestTraining::test_reactant1_network - UnboundLocalError: local variable 'kdtree' referenced before assignment
    FAILED tests/test_Training.py::TestTraining::test_reactant2_network - UnboundLocalError: local variable 'kdtree' referenced before assignment
    

    at least for the unittest, what should the correct path be? and would it be possible to make these paths user-passable arguments?


    https://github.com/wenhao-gao/SynNet/blob/56917a668c1a6b633964e02eb53b717be0d1dd64/scripts/predict_multireactant_mp.py#L29 there's a similar hardcoding in this line, so I suppose we'll have to generate the .json.gz ourselves

    opened by linminhtoo 1
  • predict_multireactant_mp.py error

    predict_multireactant_mp.py error

    I run the code with my data (which have smiles data more than 2000). And then, the sentence like below was printed. Can you tell me why the error occurs? I don't know the exact list object which provoke the error.

    list index out of range

    opened by SejeongPark8354 1
  • Error computing embeddings

    Error computing embeddings

    When running the compute_embedding.py I get this error.

    Using backend: pytorch
    Downloading gin_supervised_contextpred_pre_trained.pth from https://data.dgl.ai/dgllife/pre_trained/gin_supervised_contextpred.pth...
    Pretrained model loaded
    Total data:  172988
      0%|                                                                                                                                                                                                            | 0/172988 [00:00<?, ?it/s]
    Traceback (most recent call last):
      File "/home/ec2-user/SynNet/scripts/compute_embedding.py", line 143, in <module>
        embeddings.append(model(smi))
      File "/home/ec2-user/miniconda3/envs/rdkit/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl
        return forward_call(*input, **kwargs)
    TypeError: forward() missing 2 required positional arguments: 'categorical_node_feats' and 'categorical_edge_feats'
    

    When trying to run the compute_embedding_mp.py I get the following error

    Using backend: pytorch
    Downloading gin_supervised_contextpred_pre_trained.pth from https://data.dgl.ai/dgllife/pre_trained/gin_supervised_contextpred.pth...
    Pretrained model loaded
    Total data:  172988
    Traceback (most recent call last):
      File "/home/ec2-user/SynNet/scripts/compute_embedding_mp.py", line 29, in <module>
        embeddings = pool.map(gin_embedding, data)
    NameError: name 'gin_embedding' is not defined
    

    I think this can be resolved by changing gin_embedding to model but that then results in the above error.

    opened by tkram01 1
  • WIP: Syntree visualisation with graphviz

    WIP: Syntree visualisation with graphviz

    Visualize syntree with graphviz instead of mermaid.js.

    Works by plotting all chemicals as pngs and then uses graphviz to create a single image of the entire syntree.

    Reason for change:

    To do:

    • [ ] update readme
    • [ ] write (some) tests
    • [ ] figure out how to plot in higher resolution, ideally svg
    • [ ] add target node to plot (if present/available as smiles)
    • [ ] add wrapper or script to plot multiple syntrees with sane defaults
    • [ ] add direct display in jupyter notebooks

    Inspiration from: https://github.com/MolecularAI/aizynthfinder/blob/9e44989213c11f1bb647a00b8756e0c76a8f4b52/aizynthfinder/utils/image.py

    opened by chrulm 0
  • Refactor SynNet

    Refactor SynNet

    This PR concludes some refactoring of SynNet.

    New:

    • performance improvements
    • refactored scripts/modules (wip)

    Breaking:

    • unittests (somewhat replaced by the INSTRUCTIONS.md file)
    • Graph neural net embeddings (not supported as of now)

    Removed:

    • all code related to beam search
    opened by chrulm 0
  • index 192158 is out of bounds for axis 0 with size 179821

    index 192158 is out of bounds for axis 0 with size 179821

    Dear authors, we can not run the 20-predict-targets.py file, the previous files can all be performed correctly.

    Can you tell me what I should do to solve this? Thank you a lot!!

    image

    opened by JackAILab 0
Releases(v2.0.0)
  • v2.0.0(Oct 12, 2022)

    Significant changes from the previous SynNet version.

    New:

    • Performance improvements
    • Refactored scripts/modules (wip)
    • Improved documentation and instructions
    • Fixed all opened issues and bugs (predict_multireactant_mp.py error, hard-coded paths)

    Removed:

    • All code related to beam search
    Source code(tar.gz)
    Source code(zip)
Owner
Wenhao Gao
I'm currently a PhD student in ChemE at MIT. I'm interested in developing systematical molecular design and synthesis protocols.
Wenhao Gao
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022