A simple Tensorflow based library for deep and/or denoising AutoEncoder.

Overview

libsdae - deep-Autoencoder & denoising autoencoder

A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn style.

Prerequisities & Support

  • Tensorflow 1.0 is needed.
  • Supports both Python 2.7 and 3.4+ . Inform if it doesn't.

Installing

pip install git+https://github.com/rajarsheem/libsdae.git

Usage and small doc

test.ipynb has small example where both a tiny and a large dataset is used.

from deepautoencoder import StackedAutoEncoder
model = StackedAutoEncoder(dims=[5,6], activations=['relu', 'relu'], noise='gaussian', epoch=[10000,500],
                            loss='rmse', lr=0.007, batch_size=50, print_step=2000)
# usage 1 - encoding same data                           
result = model.fit_transform(x)
# usage 2 - fitting on one dataset and transforming (encoding) on another data
model.fit(x)
result = model.transform(np.random.rand(5, x.shape[1]))

Alt text

Important points:

  • If noise is not given, it becomes an autoencoder instead of denoising autoencoder.
  • dims refers to the dimenstions of hidden layers. (3 layers in this case)
  • noise = (optional)['gaussian', 'mask-0.4']. mask-0.4 means 40% of bits will be masked for each example.
  • x_ is the encoded feature representation of x.
  • loss = (optional) reconstruction error. rmse or softmax with cross entropy are allowed. default is rmse.
  • print_step is the no. of steps to skip between two loss prints.
  • activations can be 'sigmoid', 'softmax', 'tanh' and 'relu'.
  • batch_size is the size of batch in every epoch
  • Note that while running, global loss means the loss on the total dataset and not on a specific batch.
  • epoch is a list denoting the no. of iterations for each layer.

Citing

  • Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion by P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. Manzagol (Journal of Machine Learning Research 11 (2010) 3371-3408)

Contributing

You are free to contribute by starting a pull request. Some suggestions are:

  • Variational Autoencoders
  • Recurrent Autoencoders.
Owner
Rajarshee Mitra
I work at the intersection of NLU and Machine Learning. Currently, these are my primary areas of interest.
Rajarshee Mitra
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022