Pytorch implementation for RelTransformer

Overview

RelTransformer

Our Architecture

image

This is a Pytorch implementation for RelTransformer

The implementation for Evaluating on VG200 can be found here

Requirements

conda env create -f reltransformer_env.yml

Compilation

Compile the CUDA code in the Detectron submodule and in the repo:

cd $ROOT/lib
sh make.sh

Annotations

create a data folder at the top-level directory of the repository

# ROOT = path/to/cloned/repository
cd $ROOT
mkdir data

GQA

Download it here. Unzip it under the data folder. You should see a gvqa folder unzipped there. It contains seed folder called seed0 that contains .json annotations that suit the dataloader used in this repo.

Visual Genome

Download it here. Unzip it under the data folder. You should see a vg8k folder unzipped there. It contains seed folder called seed3 that contains .json annotations that suit the dataloader used in this repo.

Word2Vec Vocabulary

Create a folder named word2vec_model under data. Download the Google word2vec vocabulary from here. Unzip it under the word2vec_model folder and you should see GoogleNews-vectors-negative300.bin there.

Images

GQA

Create a folder for all images:

# ROOT=path/to/cloned/repository
cd $ROOT/data/gvqa
mkdir images

Download GQA images from the here

Visual Genome

Create a folder for all images:

# ROOT=path/to/cloned/repository
cd $ROOT/data/vg8k
mkdir VG_100K

Download Visual Genome images from the official page. Unzip all images (part 1 and part 2) into VG_100K/. There should be a total of 108249 files.

Pre-trained Object Detection Models

Download pre-trained object detection models here. Unzip it under the root directory and you should see a detection_models folder there.

Evaluating Pre-trained Relationship Detection models

DO NOT CHANGE anything in the provided config files(configs/xx/xxxx.yaml) even if you want to test with less or more than 8 GPUs. Use the environment variable CUDA_VISIBLE_DEVICES to control how many and which GPUs to use. Remove the --multi-gpu-test for single-gpu inference.

Training Relationship Detection Models

It requires 8 GPUS for trianing.

GVQA

Train our relationship network using a VGG16 backbone, run

python -u tools/train_net_reltransformer.py --dataset gvqa --cfg configs/gvqa/e2e_relcnn_VGG16_8_epochs_gvqa_reltransformer.yaml --nw 8 --use_tfboard --seed 1 

Train our relationship network using a VGG16 backbone with WCE loss, run

python -u tools/train_net_reltransformer_WCE.py --dataset gvqa --cfg configs/gvqa/e2e_relcnn_VGG16_8_epochs_gvqa_reltransformer_WCE.yaml --nw 8 --use_tfboard --seed 1

To test the trained networks, run

python tools/test_net_reltransformer.py --dataset gvqa --cfg configs/gvqa/e2e_relcnn_VGG16_8_epochs_gvqa_reltransformer.yaml --load_ckpt  model-path  --use_gt_boxes --use_gt_labels --do_val

To test the trained networks, run

python tools/test_net_reltransformer_WCE.py --dataset gvqa --cfg configs/gvqa/e2e_relcnn_VGG16_8_epochs_gvqa_reltransformer_WCE.yaml --load_ckpt  model-path  --use_gt_boxes --use_gt_labels --do_val

VG8K

Train our relationship network using a VGG16 backbone, run

python -u tools/train_net_reltransformer.py --dataset vg8k --cfg configs/vg8k/e2e_relcnn_VGG16_8_epochs_vg8k_reltransformer.yaml  --nw 8 --use_tfboard --seed 3

Train our relationship network using a VGG16 backbone with WCE loss, run

python -u tools/train_net_reltransformer_wce.py --dataset vg8k --cfg configs/vg8k/e2e_relcnn_VGG16_8_epochs_vg8k_reltransformer_wce.yaml --nw 8 --use_tfboard --seed3

To test the trained networks, run

python tools/test_net_reltransformer.py --dataset vg8k --cfg configs/vg8k/e2e_relcnn_VGG16_8_epochs_vg8k_reltransformer.yaml --load_ckpt  model-path  --use_gt_boxes --use_gt_labels --do_val

To test the trained model with WCE loss function, run

python tools/test_net_reltransformer_wce.py --dataset vg8k --cfg configs/vg8k/e2e_relcnn_VGG16_8_epochs_vg8k_reltransformer_wce.yaml --load_ckpt  model-path  --use_gt_boxes --use_gt_labels --do_val

Acknowledgements

This repository uses code based on the LTVRD source code by sherif, as well as code from the Detectron.pytorch repository by Roy Tseng.

Citing

If you use this code in your research, please use the following BibTeX entry.

@article{chen2021reltransformer,
  title={RelTransformer: Balancing the Visual Relationship Detection from Local Context, Scene and Memory},
  author={Chen, Jun and Agarwal, Aniket and Abdelkarim, Sherif and Zhu, Deyao and Elhoseiny, Mohamed},
  journal={arXiv preprint arXiv:2104.11934},
  year={2021}
}

Owner
Vision CAIR Research Group, KAUST
Vision CAIR Group, KAUST, supported by Mohamed Elhoseiny
Vision CAIR Research Group, KAUST
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023