The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Overview

Hierarchical Token Semantic Audio Transformer

Introduction

The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection", in ICASSP 2022.

In this paper, we devise a model, HTS-AT, by combining a swin transformer with a token-semantic module and adapt it in to audio classification and sound event detection tasks. HTS-AT is an efficient and light-weight audio transformer with a hierarchical structure and has only 30 million parameters. It achieves new state-of-the-art (SOTA) results on AudioSet and ESC-50, and equals the SOTA on Speech Command V2. It also achieves better performance in event localization than the previous CNN-based models.

HTS-AT Architecture

Classification Results on AudioSet, ESC-50, and Speech Command V2 (mAP)

HTS-AT ClS Result

Localization/Detection Results on DESED dataset (F1-Score)

HTS-AT Localization Result

Getting Started

Install Requirments

pip install -r requirements.txt

Download and Processing Datasets

  • config.py
change the varible "dataset_path" to your audioset address
change the variable "desed_folder" to your DESED address
change the classes_num to 527
./create_index.sh # 
// remember to change the pathes in the script
// more information about this script is in https://github.com/qiuqiangkong/audioset_tagging_cnn

python main.py save_idc 
// count the number of samples in each class and save the npy files
Open the jupyter notebook at esc-50/prep_esc50.ipynb and process it
Open the jupyter notebook at scv2/prep_scv2.ipynb and process it
python conver_desed.py 
// will produce the npy data files

Set the Configuration File: config.py

The script config.py contains all configurations you need to assign to run your code. Please read the introduction comments in the file and change your settings. For the most important part: If you want to train/test your model on AudioSet, you need to set:

dataset_path = "your processed audioset folder"
dataset_type = "audioset"
balanced_data = True
loss_type = "clip_bce"
sample_rate = 32000
hop_size = 320 
classes_num = 527

If you want to train/test your model on ESC-50, you need to set:

dataset_path = "your processed ESC-50 folder"
dataset_type = "esc-50"
loss_type = "clip_ce"
sample_rate = 32000
hop_size = 320 
classes_num = 50

If you want to train/test your model on Speech Command V2, you need to set:

dataset_path = "your processed SCV2 folder"
dataset_type = "scv2"
loss_type = "clip_bce"
sample_rate = 16000
hop_size = 160
classes_num = 35

If you want to test your model on DESED, you need to set:

resume_checkpoint = "Your checkpoint on AudioSet"
heatmap_dir = "localization results output folder"
test_file = "output heatmap name"
fl_local = True
fl_dataset = "Your DESED npy file"

Train and Evaluation

Notice: Our model is run on DDP mode and requires at least two GPU cards. If you want to use a single GPU for training and evaluation, you need to mannually change sed_model.py and main.py

All scripts is run by main.py:

Train: CUDA_VISIBLE_DEVICES=1,2,3,4 python main.py train

Test: CUDA_VISIBLE_DEVICES=1,2,3,4 python main.py test

Ensemble Test: CUDA_VISIBLE_DEVICES=1,2,3,4 python main.py esm_test 
// See config.py for settings of ensemble testing

Weight Average: python main.py weight_average
// See config.py for settings of weight averaging

Localization on DESED

CUDA_VISIBLE_DEVICES=1,2,3,4 python main.py test
// make sure that fl_local=True in config.py
python fl_evaluate.py
// organize and gather the localization results
fl_evaluate_f1.ipynb
// Follow the notebook to produce the results

Model Checkpoints:

We provide the model checkpoints on three datasets (and additionally DESED dataset) in this link. Feel free to download and test it.

Citing

@inproceedings{htsat-ke2022,
  author = {Ke Chen and Xingjian Du and Bilei Zhu and Zejun Ma and Taylor Berg-Kirkpatrick and Shlomo Dubnov},
  title = {HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection},
  booktitle = {{ICASSP} 2022}
}

Our work is based on Swin Transformer, which is a famous image classification transformer model.

Owner
Knut(Ke) Chen
ORZ: { godfather: sweetdum, ufo: zgg, dragon sister: lzl, morning king: corner café }
Knut(Ke) Chen
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020