CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Overview

Temporal Context Aggregation Network - Pytorch

This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal Action Proposal Refinement", which is accepted in CVPR 2021.

[Arxiv Preprint]

Update

  • 2021.07.02: Update proposals, checkpoints, features for TCANet!
  • 2021.05.31: Repository for TCANet

Contents

Paper Introduction

image

Temporal action proposal generation aims to estimate temporal intervals of actions in untrimmed videos, which is a challenging yet important task in the video understanding field. The proposals generated by current methods still suffer from inaccurate temporal boundaries and inferior confidence used for retrieval owing to the lack of efficient temporal modeling and effective boundary context utilization. In this paper, we propose Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through "local and global" temporal context aggregation and complementary as well as progressive boundary refinement. Specifically, we first design a Local-Global Temporal Encoder (LGTE), which adopts the channel grouping strategy to efficiently encode both "local and global" temporal inter-dependencies. Furthermore, both the boundary and internal context of proposals are adopted for frame-level and segment-level boundary regressions, respectively. Temporal Boundary Regressor (TBR) is designed to combine these two regression granularities in an end-to-end fashion, which achieves the precise boundaries and reliable confidence of proposals through progressive refinement. Extensive experiments are conducted on three challenging datasets: HACS, ActivityNet-v1.3, and THUMOS-14, where TCANet can generate proposals with high precision and recall. By combining with the existing action classifier, TCANet can obtain remarkable temporal action detection performance compared with other methods. Not surprisingly, the proposed TCANet won the 1st place in the CVPR 2020 - HACS challenge leaderboard on temporal action localization task.

Prerequisites

These code is implemented in Pytorch 1.5.1 + Python3.

Code and Data Preparation

Get the code

Clone this repo with git, please use:

git clone https://github.com/qingzhiwu/Temporal-Context-Aggregation-Network-Pytorch.git

Download Datasets

We support experiments with publicly available dataset HACS for temporal action proposal generation now. To download this dataset, please use official HACS downloader to download videos from the YouTube.

To extract visual feature, we adopt Slowfast model pretrained on the training set of HACS. Please refer this repo Slowfast to extract features.

For convenience of training and testing, we provide the rescaled feature at here Google Cloud or Baidu Yun[Code:x3ve].

In Baidu Yun Link, we provide:

-- features/: SlowFast features for training, validation and testing.
-- checkpoint/: Pre-trained TCANet model for SlowFast features provided by us.
-- proposals/: BMN proposals processed by us.
-- classification/: The best classification results we used in paper and 2020 HACS challenge.

Training and Testing of TCANet

All configurations of TCANet are saved in opts.py, where you can modify training and model parameter.

1. Unzip Proposals

tar -jxvf hacs.bmn.pem.slowfast101.t200.wd1e-5.warmup.pem_input_100.tar.bz2 -C ./
tar -jxvf hacs.bmn.pem.slowfast101.t200.wd1e-5.warmup.pem_input.tar.bz2 -C ./

2. Unzip Features

# for training features
cd features/
cat slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.training.tar.bz2.*>slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.training.tar.gz
tar -zxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.training.tar.gz
tar -jxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.training.tar.bz2 -C .

# for validation features
cd features/
cat slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.validation.tar.bz2.*>slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.validation.tar.gz
tar -zxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.validation.tar.gz
tar -jxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.validation.tar.bz2 -C .

# for testing features
cd features/
cat slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.testing.tar.bz2.*>slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.testing.tar.gz
tar -zxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.testing.tar.gz
tar -jxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.testing.tar.bz2 -C .

4. Training of TCANet

python3 main_tcanet.py --mode train \
--checkpoint_path ./checkpoint/ \
--video_anno /path/to/HACS_segments_v1.1.1.json \
--feature_path /path/to/feature/ \
--train_proposals_path /path/to/pem_input_100/in/proposals \ 
--test_proposals_path /path/to/pem_input/in/proposals 

We also provide trained TCANet model in ./checkpoint in our BaiduYun Link.

6. Testing of TCANet

# We split the dataset into 4 parts, and inference these parts on 4 gpus
python3 main_tcanet.py  --mode inference --part_idx 0 --gpu 0 --classifier_result /path/to/classifier/{}94.32.json
python3 main_tcanet.py  --mode inference --part_idx 1 --gpu 1 --classifier_result /path/to/classifier/{}94.32.json
python3 main_tcanet.py  --mode inference --part_idx 2 --gpu 2 --classifier_result /path/to/classifier/{}94.32.json
python3 main_tcanet.py  --mode inference --part_idx 3 --gpu 3 --classifier_result /path/to/classifier/{}94.32.json

7. Post processing and generate final results

python3 main_tcanet.py  --mode inference --part_idx -1

Other Info

Citation

Please cite the following paper if you feel TCANet useful to your research

@inproceedings{qing2021temporal,
  title={Temporal Context Aggregation Network for Temporal Action Proposal Refinement},
  author={Qing, Zhiwu and Su, Haisheng and Gan, Weihao and Wang, Dongliang and Wu, Wei and Wang, Xiang and Qiao, Yu and Yan, Junjie and Gao, Changxin and Sang, Nong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={485--494},
  year={2021}
}

Contact

For any question, please file an issue or contact

Zhiwu Qing: [email protected]
Owner
Zhiwu Qing
Zhiwu Qing
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021