CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Overview

Temporal Context Aggregation Network - Pytorch

This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal Action Proposal Refinement", which is accepted in CVPR 2021.

[Arxiv Preprint]

Update

  • 2021.07.02: Update proposals, checkpoints, features for TCANet!
  • 2021.05.31: Repository for TCANet

Contents

Paper Introduction

image

Temporal action proposal generation aims to estimate temporal intervals of actions in untrimmed videos, which is a challenging yet important task in the video understanding field. The proposals generated by current methods still suffer from inaccurate temporal boundaries and inferior confidence used for retrieval owing to the lack of efficient temporal modeling and effective boundary context utilization. In this paper, we propose Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through "local and global" temporal context aggregation and complementary as well as progressive boundary refinement. Specifically, we first design a Local-Global Temporal Encoder (LGTE), which adopts the channel grouping strategy to efficiently encode both "local and global" temporal inter-dependencies. Furthermore, both the boundary and internal context of proposals are adopted for frame-level and segment-level boundary regressions, respectively. Temporal Boundary Regressor (TBR) is designed to combine these two regression granularities in an end-to-end fashion, which achieves the precise boundaries and reliable confidence of proposals through progressive refinement. Extensive experiments are conducted on three challenging datasets: HACS, ActivityNet-v1.3, and THUMOS-14, where TCANet can generate proposals with high precision and recall. By combining with the existing action classifier, TCANet can obtain remarkable temporal action detection performance compared with other methods. Not surprisingly, the proposed TCANet won the 1st place in the CVPR 2020 - HACS challenge leaderboard on temporal action localization task.

Prerequisites

These code is implemented in Pytorch 1.5.1 + Python3.

Code and Data Preparation

Get the code

Clone this repo with git, please use:

git clone https://github.com/qingzhiwu/Temporal-Context-Aggregation-Network-Pytorch.git

Download Datasets

We support experiments with publicly available dataset HACS for temporal action proposal generation now. To download this dataset, please use official HACS downloader to download videos from the YouTube.

To extract visual feature, we adopt Slowfast model pretrained on the training set of HACS. Please refer this repo Slowfast to extract features.

For convenience of training and testing, we provide the rescaled feature at here Google Cloud or Baidu Yun[Code:x3ve].

In Baidu Yun Link, we provide:

-- features/: SlowFast features for training, validation and testing.
-- checkpoint/: Pre-trained TCANet model for SlowFast features provided by us.
-- proposals/: BMN proposals processed by us.
-- classification/: The best classification results we used in paper and 2020 HACS challenge.

Training and Testing of TCANet

All configurations of TCANet are saved in opts.py, where you can modify training and model parameter.

1. Unzip Proposals

tar -jxvf hacs.bmn.pem.slowfast101.t200.wd1e-5.warmup.pem_input_100.tar.bz2 -C ./
tar -jxvf hacs.bmn.pem.slowfast101.t200.wd1e-5.warmup.pem_input.tar.bz2 -C ./

2. Unzip Features

# for training features
cd features/
cat slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.training.tar.bz2.*>slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.training.tar.gz
tar -zxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.training.tar.gz
tar -jxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.training.tar.bz2 -C .

# for validation features
cd features/
cat slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.validation.tar.bz2.*>slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.validation.tar.gz
tar -zxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.validation.tar.gz
tar -jxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.validation.tar.bz2 -C .

# for testing features
cd features/
cat slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.testing.tar.bz2.*>slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.testing.tar.gz
tar -zxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.testing.tar.gz
tar -jxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.testing.tar.bz2 -C .

4. Training of TCANet

python3 main_tcanet.py --mode train \
--checkpoint_path ./checkpoint/ \
--video_anno /path/to/HACS_segments_v1.1.1.json \
--feature_path /path/to/feature/ \
--train_proposals_path /path/to/pem_input_100/in/proposals \ 
--test_proposals_path /path/to/pem_input/in/proposals 

We also provide trained TCANet model in ./checkpoint in our BaiduYun Link.

6. Testing of TCANet

# We split the dataset into 4 parts, and inference these parts on 4 gpus
python3 main_tcanet.py  --mode inference --part_idx 0 --gpu 0 --classifier_result /path/to/classifier/{}94.32.json
python3 main_tcanet.py  --mode inference --part_idx 1 --gpu 1 --classifier_result /path/to/classifier/{}94.32.json
python3 main_tcanet.py  --mode inference --part_idx 2 --gpu 2 --classifier_result /path/to/classifier/{}94.32.json
python3 main_tcanet.py  --mode inference --part_idx 3 --gpu 3 --classifier_result /path/to/classifier/{}94.32.json

7. Post processing and generate final results

python3 main_tcanet.py  --mode inference --part_idx -1

Other Info

Citation

Please cite the following paper if you feel TCANet useful to your research

@inproceedings{qing2021temporal,
  title={Temporal Context Aggregation Network for Temporal Action Proposal Refinement},
  author={Qing, Zhiwu and Su, Haisheng and Gan, Weihao and Wang, Dongliang and Wu, Wei and Wang, Xiang and Qiao, Yu and Yan, Junjie and Gao, Changxin and Sang, Nong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={485--494},
  year={2021}
}

Contact

For any question, please file an issue or contact

Zhiwu Qing: [email protected]
Owner
Zhiwu Qing
Zhiwu Qing
Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation

Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation The code repository for "Audio-Visual Generalized Few-Shot Learning with

Kaiaicy 3 Jun 27, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022