Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Overview

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis

This repository contains all the code used in L. de Oliveira (@lukedeo), M. Paganini (@mickypaganini), B. Nachman (@bnachman), Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis [arXiv:1701.05927]

Citations

You are more than welcome to use the open data and open-source software provided here for any of your projects, but we kindly ask you that you please cite them using the DOIs provided below:

Asset Location
Source Code (this repository) DOI
Data (Pythia images) DOI
Model Weights DOI
Docker image (generation)

If you're using ideas or methods discussed in the paper, with or without using the software, please cite:

@article{lagan,
      author         = "de Oliveira, Luke and Paganini, Michela and Nachman, Benjamin",
      title          = "{Learning Particle Physics by Example: Location-Aware
                        Generative Adversarial Networks for Physics Synthesis}",
      year           = "2017",
      eprint         = "1701.05927",
      archivePrefix  = "arXiv",
      primaryClass   = "stat.ML",
      SLACcitation   = "%%CITATION = ARXIV:1701.05927;%%"
}

Getting Started

To clone everything necessary, you'll need to run git clone --recursive https://github.com/lukedeo/adversarial-jets to fetch all the submodules (you can add a -j6 or some other number to launch concurrent clones).

This repository is structured as such:

Generation

[TODO: allow for preprocessing in Docker] This folder links to the submodule used for generating Pythia images.

Models

This folder contains the Keras models used for training the LAGAN seen in the paper. By running python train.py -h from this folder, you should see all available options for running the training, as well as how to find / download the data required.

Analysis

[TODO: update filenames, download links, etc.] This folder contains a jupyter nootbook that will guide you through the production of the plots that appear in the paper. You will be able to reproduce them and modify them as you wish using our trained models and open datasets, or reuse the plotting functions to visualize the performance of your own LAGAN.

Simply run: jupyter notebook plots.ipynb

You might also like...
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

PyTorch implementation of
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Official implementation of
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Based on the paper
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Minimal PyTorch implementation of Generative Latent Optimization from the paper
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Comments
  • Add other architectures to models/

    Add other architectures to models/

    In the arXiv paper, we say that we tried different things along the way (FCN, CNN, 2-stream, etc.) and that although we don't report the results for all, the architectures are available on github. We should add them to the models/ folder.

    opened by mickypaganini 1
  • Link github with Zenodo for code citation

    Link github with Zenodo for code citation

    This is something I think only @lukedeo can do, given that the repo is under his name. Here are the instructions: https://guides.github.com/activities/citable-code/

    opened by mickypaganini 1
  • To-do

    To-do

    • [x] We need to not train on the whole 2M sample (too long to experiment). Note that these samples are unshuffled and we need to shuffle them as there is a big block of signal and a big block of bkg.
    • [x] We should convert all instances of U[-1, 1] noise to N(0, 1) noise
    • [x] We should make some plotting code to evaluate after training. Maybe start with trying to make some plots for the average jets that look like the ones in the paper. There is some code for plotting average / individual jets here.
    opened by lukedeo 0
Releases(0.1.0)
Owner
Deep Learning for HEP
Developing Deep Learning solutions for High Energy Physics
Deep Learning for HEP
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022