Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Related tags

Deep LearningKEMP
Overview

Knowledge Bridging for Empathetic Dialogue Generation

License: MIT

This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Model Architecture

Image of MKEDG

Setup

  • Check the packages needed or simply run the command:
pip install -r requirements.txt
  • Download GloVe vectors from here (glove.6B.300d.txt) and put it into /data/.

  • Download other data sources regarding ConceptNet and NRC_VAD lexicon, please visit Google Drive and place processed dataset kemp_dataset_preproc.json into /data/.

  • For reproducibility purposes, we place the model checkpoints at Google Drive. You could download and move it under /result/[MODELNAME]/result/, e.g., /result/KEMP/result/KEMP_best.tar.

  • To skip training, please check folder /result/[MODELNAME]/predicition/.

Data preprocessing

The dataset (EmpatheticDialogue) is preprocessed and stored under data in pickle format

python preprocess.py

Training

KEMP (Our)

python main.py \
--cuda \
--label_smoothing \
--noam \
--emb_dim 300 \
--hidden_dim 300 \
--hop 1 \
--heads 2 \
--pretrain_emb \
--model KEMP \
--device_id 0 \
--concept_num 1 \
--total_concept_num 10 \
--attn_loss \
--pointer_gen \
--save_path result/KEMP/ \
--emb_file data/glove.6B.300d.txt

KEMP w/o ECE

This model does not consider the emotional context graph of Emotional Context Encoder (ECE).

In ECE, we enrich the dialogue history with external knowledge into an emotional context graph. Then, the emotional signals of context are distilled based on the embeddings and emotion intensity values from the emotional context graph.

python main.py \
--cuda \
--label_smoothing \
--noam \
--emb_dim 300 \
--hidden_dim 300 \
--hop 1 \
--heads 2 \
--pretrain_emb \
--model wo_ECE \
--device_id 0 \
--concept_num 1 \
--total_concept_num 10 \
--pointer_gen \
--save_path result/wo_ECE/ \
--emb_file data/glove.6B.300d.txt

KEMP w/o EDD

This model does not consider the emotional dependency strategies of Emotion-Dependency Decoder (EDD).

In EDD, given emotional signal and emotional context graph, we incorporate an emotional cross-attention mechanism to selectively learn the emotional dependencies.

python main.py \
--cuda \
--label_smoothing \
--noam \
--emb_dim 300 \
--hidden_dim 300 \
--hop 1 \
--heads 2 \
--pretrain_emb \
--model wo_EDD \
--device_id 0 \
--concept_num 1 \
--total_concept_num 10 \
--pointer_gen \
--save_path result/wo_EDD/ \
--emb_file data/glove.6B.300d.txt

Testing

Add --test into above commands.

You can directly run /result/cal_metrics.py script to evaluate the model predictions.

Citation

If you find our work useful, please cite our paper as follows:

@article{li-etal-2022-kemp,
  title={Knowledge Bridging for Empathetic Dialogue Generation},
  author={Qintong Li and Piji Li and Zhaochun Ren and Pengjie Ren and Zhumin Chen},
  booktitle={AAAI},
  year={2022},
}
Owner
Qintong Li
Qintong Li
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
Object tracking implemented with YOLOv4, DeepSort, and TensorFlow.

Object tracking implemented with YOLOv4, DeepSort, and TensorFlow. YOLOv4 is a state of the art algorithm that uses deep convolutional neural networks to perform object detections. We can take the ou

The AI Guy 1.1k Dec 29, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022