GULAG: GUessing LAnGuages with neural networks

Related tags

Deep Learninggulag
Overview

GULAG: GUessing LAnGuages with neural networks

Main Code style: black Checked with mypy GitHub license GitHub stars

cannon on sparrows

Classify languages in text via neural networks.

> Привет! My name is Egor. Was für ein herrliches Frühlingswetter, хутка расцвітуць дрэвы.
ru -- Привет
en -- My name is Egor
de -- Was für ein herrliches Frühlingswetter
be -- хутка расцвітуць дрэвы

Usage

Use requirements.txt to install necessary dependencies:

pip install -r requirements.txt

After that you can either train model:

python -m src.main train --gin-file config/train.gin

Or run inference:

python -m src.main infer

Training

All training details are covered by PyTorch-Lightning. There are:

Both modules have explicit documentation, see source files for usage details.

Dataset

Since extracting languages from a text is a kind of synthetic task, then there is no exact dataset of that. A possible approach to handle this is to use general multilingual corpses to create a synthetic dataset with multiple languages per one text. Although there is a popular mC4 dataset with large texts in over 100 languages. It is too large for this pet project. Therefore, I used wikiann dataset that also supports over 100 languages including Russian, Ukrainian, Belarusian, Kazakh, Azerbaijani, Armenian, Georgian, Hebrew, English, and German. But this dataset consists of only small sentences for NER classification that make it more unnatural.

Synthetic data

To create a dataset with multiple languages per example, I use the following sampling strategy:

  1. Select number of languages in next example
  2. Select number of sentences for each language
  3. Sample sentences, shuffle them and concatenate into single text

For exact details about sampling algorithm see generate_example method.

This strategy allows training on a large non-repeating corpus. But for proper evaluation during training, we need a deterministic subset of data. For that, we can pre-generate a bunch of texts and then reuse them on each validation.

Model

As a training objective, I selected per-token classification. This automatically allows not only classifying languages in the text, but also specifying their ranges.

The model consists of two parts:

  1. The backbone model that embeds tokens into vectors
  2. Head classifier that predicts classes by embedding vector

As backbone model I selected vanilla BERT. This model already pretrained on large multilingual corpora including non-popular languages. During training on a target task, weights of BERT were frozen to enhance speed.

Head classifier is a simple MLP, see TokenClassifier for details.

Configuration

To handle big various of parameters, I used gin-config. config folder contains all configurations split by modules that used them.

Use --gin-file CLI argument to specify config file and --gin-param to manually overwrite some values. For example, to run debug mode on a small subset with a tiny model for 10 steps use

python -m src.main train --gin-file config/debug.gin --gin-param="train.n_steps = 10"

You can also use jupyter notebook to run training, this is a convenient way to train with Google Colab. See train.ipynb.

Artifacts

All training logs and artifacts are stored on W&B. See voudy/gulag for information about current runs, their losses and metrics. Any of the presented models may be used on inference.

Inference

In inference mode, you may play with the model to see whether it is good or not. This script requires a W&B run path where checkpoint is stored and checkpoint name. After that, you can interact with a model in a loop.

The final model is stored in voudy/gulag/a55dbee8 run. It was trained for 20 000 steps for ~9 hours on Tesla T4.

$ python -m src.main infer --wandb "voudy/gulag/a55dbee8" --ckpt "step_20000.ckpt"
...
Enter text to classify languages (Ctrl-C to exit):
> İrəli! Вперёд! Nach vorne!
az -- İrəli
ru -- Вперёд
de -- Nach vorne
Enter text to classify languages (Ctrl-C to exit):
> Давайте жити дружно
uk -- Давайте жити дружно
> ...

For now, text preprocessing removes all punctuation and digits. It makes the data more robust. But restoring them back is a straightforward technical work that I was lazy to do.

Of course, you can use model from the Jupyter Notebooks, see infer.ipynb

Further work

Next steps may include:

  • Improved dataset with more natural examples, e.g. adopt mC4.
  • Better tokenization to handle rare languages, this should help with problems on the bounds of similar texts.
  • Experiments with another embedders, e.g. mGPT-3 from Sber covers all interesting languages, but requires technical work to adopt for classification task.
Owner
Egor Spirin
DL guy
Egor Spirin
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022