Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

Overview

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization

This is an official implementation in PyTorch of AFSD. Our paper is available at https://arxiv.org/abs/2103.13137

Updates

  • (May, 2021) We released AFSD training and inference code for THUMOS14 dataset.
  • (February, 2021) AFSD is accepted by CVPR2021.

Abstract

Temporal action localization is an important yet challenging task in video understanding. Typically, such a task aims at inferring both the action category and localization of the start and end frame for each action instance in a long, untrimmed video. While most current models achieve good results by using pre-defined anchors and numerous actionness, such methods could be bothered with both large number of outputs and heavy tuning of locations and sizes corresponding to different anchors. Instead, anchor-free methods is lighter, getting rid of redundant hyper-parameters, but gains few attention. In this paper, we propose the first purely anchor-free temporal localization method, which is both efficient and effective. Our model includes (i) an end-to-end trainable basic predictor, (ii) a saliency-based refinement module to gather more valuable boundary features for each proposal with a novel boundary pooling, and (iii) several consistency constraints to make sure our model can find the accurate boundary given arbitrary proposals. Extensive experiments show that our method beats all anchor-based and actionness-guided methods with a remarkable margin on THUMOS14, achieving state-of-the-art results, and comparable ones on ActivityNet v1.3.

Summary

  • First purely anchor-free framework for temporal action detection task.
  • Fully end-to-end method using frames as input rather then features.
  • Saliency-based refinement module to gather more valuable boundary features.
  • Boundary consistency learning to make sure our model can find the accurate boundary.

Performance

Getting Started

Environment

  • Python 3.7
  • PyTorch == 1.4.0 (Please make sure your pytorch version is 1.4)
  • NVIDIA GPU

Setup

pip3 install -r requirements.txt
python3 setup.py develop

Data Preparation

  • THUMOS14 RGB data:
  1. Download post-processed RGB npy data (13.7GB): [Weiyun]
  2. Unzip the RGB npy data to ./datasets/thumos14/validation_npy/ and ./datasets/thumos14/test_npy/
  • THUMOS14 flow data:
  1. Because it costs more time to generate flow data for THUMOS14, to make easy to run flow model, we provide the post-processed flow data in Google Drive and Weiyun (3.4GB): [Google Drive], [Weiyun]
  2. Unzip the flow npy data to ./datasets/thumos14/validation_flow_npy/ and ./datasets/thumos14/test_flow_npy/

If you want to generate npy data by yourself, please refer to the following guidelines:

  • RGB data generation manually:
  1. To construct THUMOS14 RGB npy inputs, please download the THUMOS14 training and testing videos.
    Training videos: https://storage.googleapis.com/thumos14_files/TH14_validation_set_mp4.zip
    Testing videos: https://storage.googleapis.com/thumos14_files/TH14_Test_set_mp4.zip
    (unzip password is THUMOS14_REGISTERED)
  2. Move the training videos to ./datasets/thumos14/validation/ and the testing videos to ./datasets/thumos14/test/
  3. Run the data processing script: python3 AFSD/common/video2npy.py
  • Flow data generation manually:
  1. If you should generate flow data manually, firstly install the denseflow.
  2. Prepare the post-processed RGB data.
  3. Check and run the script: python3 AFSD/common/gen_denseflow_npy.py

Inference

We provide the pretrained models contain I3D backbone model and final RGB and flow models for THUMOS14 dataset: [Google Drive], [Weiyun]

# run RGB model
python3 AFSD/thumos14/test.py configs/thumos14.yaml --checkpoint_path=models/thumos14/checkpoint-15.ckpt --output_json=thumos14_rgb.json

# run flow model
python3 AFSD/thumos14/test.py configs/thumos14_flow.yaml --checkpoint_path=models/thumos14_flow/checkpoint-16.ckpt --output_json=thumos14_flow.json

# run fusion (RGB + flow) model
python3 AFSD/thumos14/test.py configs/thumos14.yaml --fusion --output_json=thumos14_fusion.json

Evaluation

The output json results of pretrained model can be downloaded from: [Google Drive], [Weiyun]

# evaluate THUMOS14 fusion result as example
python3 eval.py output/thumos14_fusion.json

mAP at tIoU 0.3 is 0.6728296149479254
mAP at tIoU 0.4 is 0.6242590551201842
mAP at tIoU 0.5 is 0.5546668739091394
mAP at tIoU 0.6 is 0.4374840824921885
mAP at tIoU 0.7 is 0.3110112542745055

Training

# train the RGB model
python3 AFSD/thumos14/train.py configs/thumos14.yaml --lw=10 --cw=1 --piou=0.5

# train the flow model
python3 AFSD/thumos14/train.py configs/thumos14_flow.yaml --lw=10 --cw=1 --piou=0.5

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{lin2021afsd,
  title={Learning Salient Boundary Feature for Anchor-free Temporal Action Localization},
  author={Chuming Lin*, Chengming Xu*, Donghao Luo, Yabiao Wang, Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, Yanwei Fu},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Tencent YouTu Research
Tencent YouTu Research
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
Deep Learning Slide Captcha

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 55 Jan 02, 2023
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022