PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Overview

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks

This repo contains the PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Installation

python setup.py install 

How to run the models

We provide example scripts for each model in hyperformer/scripts/ folder with their config files in hyperformer/configs. To run the models, please do cd hyperformer and:

  • To run hyperformer++ model (This model generates the task-specific adapters using a shared hypernetwork, which is shared across the tasks and layers of a transformer.):

    bash scripts/hyperformer++.sh
    
  • To run hyperformer model (This model generates the task-specific adapters using a shared hypernetwork, which is shared across the tasks, but this is specific to each layer of a transformer. This model is less efficient compared to hyperformer++.):

    bash scripts/hyperformer.sh
    
  • To run adapter\dagger model (This model share the layer normalization between adapters across the tasks, and train adapters in a multi-task setting.):

    bash scripts/adapters_dagger.sh   
    
  • To run adapter model (This model trains a single-adapter per task and trains the adapters in a single-task learning.):

    bash scripts/adapters.sh 
    
  • To run T5 finetuning model in a multi-task learning setup:

    bash scripts/finetune.sh
    
  • To run T5 finetuning model in a single-task learning setup:

    bash scripts/finetune_single_task.sh
    

We run all the models on 4 GPUs, while this is not necessary and one can run the models on 1 GPU. In case running on one GPU, in all the scripts, please remove the -m torch.distributed.launch --nproc_per_node=4 part.

Bibliography

If you find this repo useful, please cite our paper.

@inproceedings{karimi2021parameterefficient,
  title={Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks},
  author={Karimi Mahabadi, Rabeeh and Ruder, Sebastian and Dehghani, Mostafa and Henderson, James},
  booktitle={Annual Meeting of the Association for Computational Linguistics},
  year={2021}
}

Final words

Hope this repo is useful for your research. For any questions, please create an issue or email [email protected], and I will get back to you as soon as possible.

Owner
Rabeeh Karimi Mahabadi
PhD student in NLP, working on representation learning and textual entailment
Rabeeh Karimi Mahabadi
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022