Apply our monocular depth boosting to your own network!

Overview

MergeNet - Boost Your Own Depth

Boost custom or edited monocular depth maps using MergeNet

Input Original result After manual editing of base
patchselection patchselection patchselection

You can find our Google Colaboratory notebook here. Open In Colab

In this repository, we present a stand-alone implementation of our merging operator we use in our recent work:

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

S. Mahdi H. Miangoleh*, Sebastian Dille*, Long Mai, Sylvain Paris, Yağız Aksoy. Video, Main pdf, Supplementary pdf, Project Page. Github repo.

If you are an artist:

Although we are presenting few simple examples here, both low-resolution and high-resolution depth maps can be freely edited using any program before merging with our method.

Feel free to experiment and share your results with us!

If you are a researcher developing a new (CNN-based) Monocular Depth Estimation method:

This repository is a full implementation of our double-estimation framework. Double estimation uses a base-resolution result and a high-resolution result. The optimum high-resolution for a given image, R20 resolution, depends on the receptive field size of your network (the training resolution is a good approximation) and the image content. The code for R20 computation is also provided here.

To demonstrate the high-resolution performance of your network, you can simply generate the base and high-res estimates on any dataset and use this repository to apply our double estimation method to your own work.

Our Github repo for the main project also includes the implementation of our detail-focused monocular depth performance metric D^3R.

Mix'n'match depths from different networks or use your own custom-edited ones.

In the image below, we show that choosing a different base estimate can improve the depth for the city:

Input Base and details from [MiDaS][1] Base from [LeRes][2] and details from [MiDaS][1]
patchselection patchselection patchselection

To get the optimal result for a given scene, you may want to try multiple methods in both low- and high-resolutions and pick your favourite for each case.

Input Base from [MiDaS v3 / DPT][3] Base from [MiDaS v3 / DPT][3] and details from [MiDaS v2][1]
patchselection patchselection patchselection

Moreover, you can simply edit the base image before merging using any image editing tool for more creative control:

Input Base and details from [MiDaS][1] With edited base from [MiDaS][1]
patchselection patchselection patchselection

How does it work?

merge

This repository lets you combine two input depth maps with certain characteristics.

Low-res base depth

The network uses the base estimate as the main structure of the scene. Typically this is the default-resolution result of a monocular depth estimation network at around 300x300 resolution.

This base estimate is a good candidate for editing due to its low-resolution nature.

Monocular depth estimation methods with geometric consistency optimizations can be used as the base estimation to merge details onto a consistent base.

High-res depth with details

The merging operation transfers the details from this high-resolution depth map onto the structure provided by the low-resolution base pair.

The high-resolution input does not need structural consistency and is typically generated by feeding the input image at a much higher resolution than the training resolution of a given monocular depth estimation network.

You can compute the optimal high-resolution estimation size for a given image using our R20 resolution calculator, also provided in this repository. You can also simply use 2x or 3x resolution to simply add more details.

For more information on this project:

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

S. Mahdi H. Miangoleh*, Sebastian Dille*, Long Mai, Sylvain Paris, Yağız Aksoy. Main pdf, Supplementary pdf, Project Page. Github repo.

video

Citation

This implementation is provided for academic use only. Please cite our paper if you use this code or any of the models.

@INPROCEEDINGS{Miangoleh2021Boosting,
author={S. Mahdi H. Miangoleh and Sebastian Dille and Long Mai and Sylvain Paris and Ya\u{g}{\i}z Aksoy},
title={Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging},
journal={Proc. CVPR},
year={2021},
}

Credits

The "Merge model" code skeleton (./pix2pix folder) was adapted from the [pytorch-CycleGAN-and-pix2pix][4] repository.
[1]: https://github.com/intel-isl/MiDaS/tree/v2
[2]: https://github.com/aim-uofa/AdelaiDepth/tree/main/LeReS
[3]: https://github.com/isl-org/DPT
[4]: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix \

Owner
Computational Photography Lab @ SFU
Computational Photography Lab at Simon Fraser University, lead by @yaksoy
Computational Photography Lab @ SFU
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023