Rendering Point Clouds with Compute Shaders

Overview

Compute Shader Based Point Cloud Rendering

This repository contains the source code to our techreport:
Rendering Point Clouds with Compute Shaders and Vertex Order Optimization
Markus Schütz, Bernhard Kerbl, Michael Wimmer. (not peer-reviewed, currently in submission)

  • Compute shaders can render point clouds up to an order of magnitude faster than GL_POINTS.
  • With a combination of warp-wide deduplication and early-z, compute shaders able to render 796 million points (12.7GB) at stable 62 to 64 frames per second in various different viewpoints on an RTX 3090. This corresponds to a memory bandwidth utilization of about 802GB/s, or a throughput of about 50 billion points per second.
  • The vertex order also strongly affects the performance. Some locality of points that are consecutive in memory is beneficial, but excessive locality can result in drastic slowdowns if it leads to thousands of GPU threads attempting to update a single pixel. As such, neither Morton ordered nor shuffled buffers are optimal. However combining both by first sorting by Morton code, and then shuffling batches of 128 points but leaving points within a batch in order, results in an improved ordering that ensures high performance with our compute approaches, and it also increases the performance of GL_POINTS by up to 5 times.

About the Framework

This framework is written in C++ and JavaScript (using V8). Most of the rendering is done in JavaScript with bindings to OpenGL 4.5 functions. It is written with live-coding in mind, so many javascript files are immediately executed at runtime as soon as they are saved by any text editor. As such, code has to be written with repeated execution in mind.

Getting Started

  • Compile Skye.sln project with Visual Studio.
  • Open the workspace in vscode.
  • Open "load_pointcloud.js" (quick search files via ctrl + e).
    • Adapt the path to the correct location of the las file.
    • Adapt position and lookAt to a viewpoint that fits your point cloud.
    • Change window.x to something that fits your monitor setup, e.g., 0 if you've got a single monitor, or 2540 if you've got two monitors and your first one has a with of 2540 pixels.
  • Press "Ctrl + Shift + B" to start the app. You should be seing an empty green window. (window.x is not yet applied)
  • Once you save "load_pointcloud.js" via ctrl+s, it will be executed, the window will be repositioned, and the point cloud will be loaded.
  • You can change position and lookAt at runtime and apply them by simply saving load_pointcloud.js again. The pointcloud will not be loaded again - to do so, you'll need to restart first.

After loading the point cloud, you should be seeing something like the screenshot below. The framework includes an IMGUI window with frame times, and another window that lets you switch between various rendering methods. Best try with data sets with tens of millions or hundreds of millions of points!

sd

Code Sections

Code for the individual rendering methods is primarily found in the modules/compute_<methods> folders.

Method Location
atomicMin ./modules/compute
reduce ./modules/compute_ballot
early-z ./modules/compute_earlyDepth
reduce & early-z ./modules/compute_ballot_earlyDepth
dedup ./modules/compute_ballot_earlyDepth_dedup
HQS ./modules/compute_hqs
HQS1R ./modules/compute_hqs_1x64bit_fast
busy-loop ./modules/compute_guenther
just-set ./modules/compute_just_set

Results

Frame times when rendering 796 million points on an RTX 3090 in a close-up viewpoint. Times in milliseconds, lower is better. The compute methods reduce (with early-z) and dedup (with early-z) yield the best results with Morton order (<16.6ms, >60fps). The shuffled Morton order greatly improves performance of GL_POINTS and some compute methods, and it is usually either the fastest or within close margins of the fastest combinations of rendering method and ordering.

Not depicted is that the dedup method is the most stable approach that continuously maintains >60fps in all viewpoints, while the performance of the reduce method varies and may drop to 50fps in some viewpoints. As such, we would recomend to use dedup in conjunction with Morton order if the necessary compute features are available, and reduce (with early-z) for wider support.

Comments
  • Can provide some dataset to test the demo (like default Candi Banyunibo data set)?

    Can provide some dataset to test the demo (like default Candi Banyunibo data set)?

    Hi, just found this paper & project via graphics weekly news.. just compiled the demo, and seems uses that dataset by default (banyunibo_inside_morton).. anyway to obtain that dataset? if not can you provide some download link to some huge & equivalent data set used by the demo like retz,eclepens,etc.. are this datasets under non "open" licenses? just wanted to test performance on my Titan V compared to a 3090.. thanks..

    opened by oscarbg 11
  • invisible window

    invisible window

    If I compile in DEBUG (VS2019) it crashes in void V8Helper::setupGL in this line: setupV8GLExtBindings(tpl);

    If I compile in RELEASE it compiles and the console shows no error but the windows is invisible, I can only see the console (and if I click keys I see them in the log).

    I have a 1070

    opened by jagenjo 3
  • A question of render.cs

    A question of render.cs

    image in render.cs there's vec2 variable called imgPos, i don't know why it times 0.5 and plus 0.5, what does it mean? Thank you very much if you can answer my questions. : )

    opened by UMR19 2
  • Questions about point cloud display when zoom in

    Questions about point cloud display when zoom in

    Hi, Thanks for your excellent job, just i compiled the demo and modified the setting to load my point cloud, it loaded successfully and have a better performance. but when i roll the mouse wheel to zoom in to look at the detail, lots of point missed, but when i use potree to display my point cloud, it display perfect. I am a beginner in computer graphics,may be it's point size is too small? image In the potree image

    Thanks for you reply:)

    opened by UMR19 0
  • ssRG and ssBA not bound to resolve?

    ssRG and ssBA not bound to resolve?

    In https://github.com/m-schuetz/compute_rasterizer/blob/master/compute_hqs/render.js

    Both buffers are bound in the render attribute pass, but neither is explicitly bound in the resolve pass. Always assumed that bindBufferBase affects the currently bound shader, but apparently the binding caries over to the next shader? Just a reminder to look this up to clarify my understanding of how they work.

    gl.bindBufferBase(gl.SHADER_STORAGE_BUFFER, 3, ssRG);
    gl.bindBufferBase(gl.SHADER_STORAGE_BUFFER, 4, ssBA);
    
    opened by m-schuetz 0
Releases(build_laz_crf)
Owner
Markus Schütz
Markus Schütz
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 05, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021