A toolkit for geo ML data processing and model evaluation (fork of solaris)

Overview

lunular

An open source ML toolkit for overhead imagery.

PyPI python version PyPI build docs license

This is a beta version of lunular which may continue to develop. Please report any bugs through issues!


This library is a minimal fork of the solaris project by CosmiQ Works. Currently, the focus of this library is to extract the dataset preprocessing and evaluation methods that do not depend on tensorflow or pytorch, in order to produce a relatively light, framework agnostic package for preparing geospatial ML datasets and evaluating geospatial ML results.

This repository provides the source code for the lunular project, which provides software tools for:

  • Tiling large-format overhead images and vector labels
  • Converting between geospatial raster and vector formats and machine learning-compatible formats
  • Evaluating performance of deep learning model predictions, including semantic and instance segmentation, object detection, and related tasks

Documentation

The full documentation for lunular can be found at https://lunular.readthedocs.io, and includes:

  • A summary of lunular
  • Installation instructions
  • API Documentation
  • Tutorials for common uses

The documentation is still being improved, so if a tutorial you need isn't there yet, check back soon or post an issue!

Installation Instructions

coming soon: One-command installation from conda-forge.

We recommend creating a conda environment with the dependencies defined in environment.yml before installing lunular. After cloning the repository:

cd lunular

If you're installing on a system with GPU access:

conda env create -n lunular -f environment-gpu.yml

Otherwise:

conda env create -n lunular -f environment.yml

Finally, regardless of your installation environment:

conda activate lunular
pip install .

pip

The package also exists on PyPI, but note that some of the dependencies, specifically rtree and gdal, are challenging to install without anaconda. We therefore recommend installing at least those dependencies using conda before installing from PyPI.

conda install -c conda-forge rtree gdal=2.4.1
pip install lunular

If you don't want to use conda, you can install libspatialindex, then pip install rtree. Installing GDAL without conda can be very difficult and approaches vary dramatically depending upon the build environment and version, but the rasterio install documentation provides OS-specific install instructions. Simply follow their install instructions, replacing pip install rasterio with pip install lunular at the end.

Dependencies

All dependencies can be found in the requirements file ./requirements.txt or environment.yml

License

See LICENSE.

Owner
Ryan Avery
Ryan Avery
Interactive Parallel Computing in Python

Interactive Parallel Computing with IPython ipyparallel is the new home of IPython.parallel. ipyparallel is a Python package and collection of CLI scr

IPython 2.3k Dec 30, 2022
Kalman filter library

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM.

comma.ai 276 Jan 01, 2023
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023