Repository for training material for the 2022 SDSC HPC/CI User Training Course

Overview

hpc-training-2022

Repository for training material for the 2022 SDSC HPC/CI Training Series

HPC/CI Training Series home

https://www.sdsc.edu/event_items/202201_HPC-CI-Training-Series.html

Content:

Session 1 (01/14/22 – 03/04/22):

Agenda: Learn about tools and computing concepts necessary for HPC and CI systems

WEEK DATE TOPIC MATERIAL INSTRUCTOR
Week 01 Fri, 01/14/22 Program Orientation, history, plan,
Registration process & accounts
Interactive Video
YouTube
Mary Thomas
Week 02 Fri, 01/21/22 Parallel Computing Concepts
HPC overview & Expanse Architecture
Interactive Video
YouTube
Bob Sinkovits
Week 03 Fri, 01/28/22 Data Management
Job Submission - Queues and batch scripting
Interactive Video
YouTube
Mahidhar Tatineni,
Mary Thomas
Week 04 Fri, 02/04/22 Introduction to Singularity Containers Interactive Video
YouTube
Marty Kandes
Week 05 Fri, 02/11/22 Introduction to Software Containers and Kubernetes Interactive Video
YouTube
Jeffrey Weekly
Week 06 Fri, 02/18/22 Running Secure Jupyter Notebooks on HPC Systems Interactive Computing Interactive Video
YouTube
Mary Thomas
Week 07 Fri, 02/25/22 Introduction to Neural Networks, Convolution Neural Networks, and Deep Learning,
Introduction to Using TensorFlow and PyTorch on Expanse
Interactive Video
YouTube
Paul Rodriguez,
Mahidhar Tatineni
Week 08 Fri, 03/4/22 Oracle Cloud Overview
Azure Overview
Cloud Computing on JetStream
Interactive Video
YouTube
Santosh Bhatt,
Paul Yu,
Marty Kandes

[ Back to Session 1 ] [ Back to Top ]

Session 2: (03/28/22 - 05/06/22)

Agenda: Learn about tools and computing concepts necessary for HPC and CI systems

WEEK DATE TOPIC MATERIAL INSTRUCTOR
Week 09 Fri, 04/1/22 Visualization using Jupyter Notebooks Interactive Video
YouTube
Bob Sinkovits
Week 10 Fri, 04/8/22 CPU Computing: Introduction to OpenMP/Threads Interactive Video
YouTube
Marty Kandes
Week 11 Fri, 04/15/22 CPU Computing: Introduction to MPI Interactive Video
YouTube
Mahidhar Tatineni
Week 12 Fri, 04/22/22 CPU profiling with gprof and uProf Interactive Video
YouTube
Bob Sinkovits
Week 13 Fri, 04/29/22 Introduction to GPU computing
Programming and profiling with CUDA, OpenACC, and NSight
Interactive Video
YouTube
Andreas Goetz
Mahidhar Tatineni
Week 14 Fri, 05/06/22 GPU Computing with Python (Numba, CuPy, and RAPIDS) YouTube Kristopher Keipert (NVIDIA)
Zoe Ryan (NVIDIA)

[ Back to Session 2 ] [ Back to Top ]


## Instructors
NAME TITLE ORG
Santosh Bhatt Principal Enterprise Cloud Architect, Oracle (website) Oracle
Andy Goetz Director - Computational Chemistry Laboratory (website) SDSC
Kristopher Keipert Senior Solutions Architect (website) NVIDA
Marty Kandes Computational and Data Science Research Specialist (website) SDSC
Paul Rodriguez Research Programmer (website) SDSC
Zoe Ryan Solutions Architect (website) NVIDA
Bob Sinkovits Director for Scientific Computing Applications (website) SDSC
Mahidhar Tatineni Director of User Services (website) SDSC
Mary Thomas Computational Data Scientist, Lead - HPC Training (website) SDSC
Jeffrey Weekly Research IT Engagement and Support Manager bio University of California Santa Cruz
Cindy Wong Events Specialist SDSC
Nicole Wolter Computational and Data Science Research Specialist (website) SDSC
Paul Yu Sr. Cloud Solutions Architect bio Microsoft

[ Back to Top ]

Owner
sdsc-hpc-training-org
An organization for managing the various sdsc hpc education repos
sdsc-hpc-training-org
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023