πŸš€ RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

Overview

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutting edge technologies, this repository provides an easy-to-use toolkit for running and fine-tuning the state-of-the-art dense retrievers, namely πŸš€ RocketQA. This toolkit has the following advantages:

  • State-of-the-art: πŸš€ RocketQA provides our well-trained models, which achieve SOTA performance on many dense retrieval datasets. And it will continue to update the latest models.
  • First-Chinese-model: πŸš€ RocketQA provides the first open source Chinese dense retrieval model, which is trained on millions of manual annotation data from DuReader.
  • Easy-to-use: By integrating this toolkit with JINA, πŸš€ RocketQA can help developers build an end-to-end retrieval system and question answering system with several lines of code.

News

  • April 29, 2022: Training function is added to RocketQA toolkit. And the baseline models of DuReaderretrieval (both cross encoder and dual encoder) are available in RocketQA models.
  • March 30, 2022: The baseline of DuReaderretrieval leaderboard was released. [code/model]
  • March 30, 2022: We released DuReaderretrieval, a large-scale Chinese benchmark for passage retrieval. The dataset contains over 90K questions and 8M passages from Baidu Search. [paper] [data]
  • December 3, 2021: The toolkit of dense retriever RocketQA was released, including the first chinese dense retrieval model trained on DuReader.
  • August 26, 2021: RocketQA v2 was accepted by EMNLP 2021. [code/model]
  • May 5, 2021: PAIR was accepted by ACL 2021. [code/model]
  • March 11, 2021: RocketQA v1 was accepted by NAACL 2021. [code/model]

Installation

We provide two installation methods: Python Installation Package and Docker Environment

Install with Python Package

First, install PaddlePaddle.

# GPU version:
$ pip install paddlepaddle-gpu

# CPU version:
$ pip install paddlepaddle

Second, install rocketqa package (latest version: 1.1.0):

$ pip install rocketqa

NOTE: this toolkit MUST be running on Python3.6+ with PaddlePaddle 2.0+.

Install with Docker

docker pull rocketqa/rocketqa

docker run -it docker.io/rocketqa/rocketqa bash

Getting Started

Refer to the examples below, you can build and run your own Search Engine with several lines of code. We also provide a Playground with JupyterNotebook. Try πŸš€ RocketQA straight away in your browser!

Running with JINA

JINA is a cloud-native neural search framework to build SOTA and scalable deep learning search applications in minutes. Here is a simple example to build a Search Engine based on JINA and RocketQA.

cd examples/jina_example
pip3 install -r requirements.txt

# Generate vector representations and build a libray for your Documents
# JINA will automaticlly start a web service for you
python3 app.py index toy_data/test.tsv

# Try some questions related to the indexed Documents
python3 app.py query_cli

Please view JINA example to know more.

Running with FAISS

We also provide a simple example built on Faiss.

cd examples/faiss_example/
pip3 install -r requirements.txt

# Generate vector representations and build a libray for your Documents
python3 index.py zh ../data/dureader.para test_index

# Start a web service on http://localhost:8888/rocketqa
python3 rocketqa_service.py zh ../data/dureader.para test_index

# Try some questions related to the indexed Documents
python3 query.py

API

You can also easily integrate πŸš€ RocketQA into your own task. We provide two types of models, ERNIE-based dual encoder for answer retrieval and ERNIE-based cross encoder for answer re-ranking. For running our models, you can use the following functions.

Load model

rocketqa.available_models()

Returns the names of the available RocketQA models. To know more about the available models, please see the code comment.

rocketqa.load_model(model, use_cuda=False, device_id=0, batch_size=1)

Returns the model specified by the input parameter. It can initialize both dual encoder and cross encoder. By setting input parameter, you can load either RocketQA models returned by "available_models()" or your own checkpoints.

Dual encoder

Dual-encoder returned by "load_model()" supports the following functions:

model.encode_query(query: List[str])

Given a list of queries, returns their representation vectors encoded by model.

model.encode_para(para: List[str], title: List[str])

Given a list of paragraphs and their corresponding titles (optional), returns their representations vectors encoded by model.

model.matching(query: List[str], para: List[str], title: List[str])

Given a list of queries and paragraphs (and titles), returns their matching scores (dot product between two representation vectors).

model.train(train_set: str, epoch: int, save_model_path: str, args)

Given the hyperparameters train_set, epoch and save_model_path, you can train your own dual encoder model or finetune our models. Other settings like save_steps and learning_rate can also be set in args. Please refer to examples/example.py for detail.

Cross encoder

Cross-encoder returned by "load_model()" supports the following function:

model.matching(query: List[str], para: List[str], title: List[str])

Given a list of queries and paragraphs (and titles), returns their matching scores (probability that the paragraph is the query's right answer).

model.train(train_set: str, epoch: int, save_model_path: str, args)

Given the hyperparameters train_set, epoch and save_model_path, you can train your own cross encoder model or finetune our models. Other settings like save_steps and learning_rate can also be set in args. Please refer to examples/example.py for detail.

Examples

Following the examples below, you can retrieve the vector representations of your documents and connect πŸš€ RocketQA to your own tasks.

Run RocketQA Model

To run RocketQA models, you should set the parameter model in 'load_model()' with RocketQA model name returned by 'available_models()'.

import rocketqa

query_list = ["trigeminal definition"]
para_list = [
    "Definition of TRIGEMINAL. : of or relating to the trigeminal nerve.ADVERTISEMENT. of or relating to the trigeminal nerve. ADVERTISEMENT."]

# init dual encoder
dual_encoder = rocketqa.load_model(model="v1_marco_de", use_cuda=True, device_id=0, batch_size=16)

# encode query & para
q_embs = dual_encoder.encode_query(query=query_list)
p_embs = dual_encoder.encode_para(para=para_list)
# compute dot product of query representation and para representation
dot_products = dual_encoder.matching(query=query_list, para=para_list)

Train Your Own Model

To train your own models, you can use train() function with your dataset and parameters. Training data contains 4 columns: query, title, para, label (0 or 1), separated by "\t". For detail about parameters and dataset, please refer to './examples/example.py'

import rocketqa

# init cross encoder, and set device and batch_size
cross_encoder = rocketqa.load_model(model="zh_dureader_ce", use_cuda=True, device_id=0, batch_size=32)

# finetune cross encoder based on "zh_dureader_ce_v2"
cross_encoder.train('./examples/data/cross.train.tsv', 2, 'ce_models', save_steps=1000, learning_rate=1e-5, log_folder='log_ce')

Run Your Own Model

To run your own models, you should set parameter model in 'load_model()' with a JSON config file.

import rocketqa

# init cross encoder
cross_encoder = rocketqa.load_model(model="./examples/ce_models/config.json", use_cuda=True, device_id=0, batch_size=16)

# compute relevance of query and para
relevance = cross_encoder.matching(query=query_list, para=para_list)

config is a JSON file like this

{
    "model_type": "cross_encoder",
    "max_seq_len": 384,
    "model_conf_path": "zh_config.json",
    "model_vocab_path": "zh_vocab.txt",
    "model_checkpoint_path": ${YOUR_MODEL},
    "for_cn": true,
    "share_parameter": 0
}

Folder examples provides more details.

Citations

If you find RocketQA v1 models helpful, feel free to cite our publication RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering

@inproceedings{rocketqa_v1,
    title="RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering",
    author="Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu and Haifeng Wang",
    year="2021",
    booktitle = "In Proceedings of NAACL"
}

If you find PAIR models helpful, feel free to cite our publication PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval

@inproceedings{rocketqa_pair,
    title="PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval",
    author="Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang and Ji-Rong Wen",
    year="2021",
    booktitle = "In Proceedings of ACL Findings"
}

If you find RocketQA v2 models helpful, feel free to cite our publication RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking

@inproceedings{rocketqa_v2,
    title="RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking",
    author="Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang and Ji-Rong Wen",
    year="2021",
    booktitle = "In Proceedings of EMNLP"
}

If you find DuReaderretrieval dataset helpful, feel free to cite our publication DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine

@inproceedings{DuReader_retrieval,
    title="DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine",
    author="Yifu Qiu, Hongyu Li, Yingqi Qu, Ying Chen, Qiaoqiao She, Jing Liu, Hua Wu and Haifeng Wang",
    year="2022"
}

License

This repository is provided under the Apache-2.0 license.

Contact Information

For help or issues using RocketQA, please submit a Github issue.

For other communication or cooperation, please contact Jing Liu ([email protected]) or scan the following QR Code.

Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

e-editiones.org 14 Nov 15, 2022
GPT-2 Model for Leetcode Questions in python

Leetcode using AI πŸ€– GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
Fixes mojibake and other glitches in Unicode text, after the fact.

ftfy: fixes text for you print(fix_encoding("(à¸‑'Γ’Ε’Β£')à¸‑")) (ΰΈ‡'⌣')ΰΈ‡ Full documentation: https://ftfy.readthedocs.org Testimonials β€œMy life is li

Luminoso Technologies, Inc. 3.4k Dec 29, 2022
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
Wrapper to display a script output or a text file content on the desktop in sway or other wlroots-based compositors

nwg-wrapper This program is a part of the nwg-shell project. This program is a GTK3-based wrapper to display a script output, or a text file content o

Piotr Miller 94 Dec 27, 2022
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm, corresponding to the paper Fully Supervised Speaker Diarization.

UIS-RNN Overview This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm. UIS-RNN solves the problem of s

Google 1.4k Dec 28, 2022
Yet Another Sequence Encoder - Encode sequences to vector of vector in python !

Yase Yet Another Sequence Encoder - encode sequences to vector of vectors in python ! Why Yase ? Yase enable you to encode any sequence which can be r

Pierre PACI 12 Aug 19, 2021
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech

TFPNER TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech Named entity recognition (NER), which aims at identifyin

1 Feb 07, 2022
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.

PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer

Vaidotas Ε imkus 10 Dec 06, 2022