PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

Related tags

Deep Learningpiglet
Overview

piglet

PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like this paper, please cite us:

@inproceedings{zellers2021piglet,
    title={PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World},
    author={Zellers, Rowan and Holtzman, Ari and Peters, Matthew and Mottaghi, Roozbeh and Kembhavi, Aniruddha and Farhadi, Ali and Choi, Yejin},
    booktitle ={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics},
    year={2021}
}

See more at https://rowanzellers.com/piglet

What this repo contains

Physical dynamics model

  • You can get data yourself by sampling trajectories in sampler/ and then converting them to tfrecord (which is the format I used) in tfrecord/. I also have the exact tfrecords I used at gs://piglet-data/physical-interaction-tfrecords/ -- they're big files so I turned on 'requester pays' for them.
  • You can pretrain the model and evaluate it in model/interact/train.py and model/interact/intrinsic_eval.py
  • Alteratively feel free to use my checkpoint: gs://piglet/checkpoints/physical_dynamics_model/model.ckpt-5420

Language model

  • You can process data (also in tfrecord format) using data/zeroshot_lm_setup/prepare_zslm_tfrecord.py, or download at gs://piglet-data/text-data/. I have both 'zero-shot' tfrecord data, basically a version of BookCorpus and Wikipedia where certain concepts are filtered out, as well as non-zero shot (regularly processed). This was used to evaluate generalization to new concepts.
  • Train the model using model/lm/train.py
  • Alternatively, feel free to just use my checkpoint: gs://piglet/checkpoints/language_model/model.ckpt-20000

Tying it all together

  • Everything you need for this is in model/predict_statechange/ building on both the physical dynamics model and language model pretrained.
  • I have annotations in data/annotations.jsonl for training and evaluating both tasks -- PIGPeN-NLU and PIGPeN-NLG.
  • Alternatively you can download my checkpoints at gs://piglet/checkpoints/pigpen-nlu-model/ for NLU (predicting state change given english text) or gs://piglet/checkpoints/pigpen-nlg-model/ for NLG.

That's it!

Getting the environment set up

I used TPUs for this project so those are the only things I support right now, sorry!

I used tensorflow 1.15.5 and TPUs for this project. My recommendation is to use ctpu to start up a VM with access to a v3-8 TPU. Then, use the following command to install dependencies:

curl -o ~/miniconda.sh -O  https://repo.continuum.io/miniconda/Miniconda3-4.5.4-Linux-x86_64.sh  && \
     chmod +x ~/miniconda.sh && \
     ~/miniconda.sh -b -p ~/conda && \
     rm ~/miniconda.sh && \
     ~/conda/bin/conda install -y python=3.7 tqdm numpy pyyaml scipy ipython mkl mkl-include cython typing h5py pandas && ~/conda/bin/conda clean -ya
     
echo 'export PATH=~/conda/bin:$PATH' >>~/.bashrc
source ~/.bashrc
pip install "tensorflow==1.15.5"
pip install --upgrade google-api-python-client oauth2client
pip install -r requirements.txt
Owner
Rowan Zellers
Rowan Zellers
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021