Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Related tags

Text Data & NLPDPL
Overview

Dual Path Learning for Domain Adaptation of Semantic Segmentation

Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Accepted by ICCV 2021. Paper

Requirements

  • Pytorch 3.6
  • torch==1.5
  • torchvision==0.6
  • Pillow==7.1.2

Dataset Preparations

For GTA5->Cityscapes scenario, download:

For further evaluation on SYNTHIA->Cityscapes scenario, download:

The folder should be structured as:

|DPL
|—— DPL_master/
|—— CycleGAN_DPL/
|—— data/
│   ├—— Cityscapes/  
|   |   ├—— data/
|   |       ├—— gtFine/
|   |       ├—— leftImg8bit/
│   ├—— GTA5/
|   |   ├—— images/
|   |   ├—— labels/
|   |   ├—— ...
│   ├—— synthia/ 
|   |   ├—— RGB/
|   |   ├—— GT/
|   |   ├—— Depth/
|   |   ├—— ...

Evaluation

Download pre-trained models from Pretrained_Resnet_GTA5 [Google_Drive, BaiduYun(Code:t7t8)] and save the unzipped models in ./DPL_master/DPL_pretrained, download translated target images from DPI2I_City2GTA_Resnet [Google_Drive, BaiduYun(Code:cf5a)] and save the unzipped images in ./DPL_master/DPI2I_images/DPI2I_City2GTA_Resnet/val. Then you can evaluate DPL and DPL-Dual as following:

  • Evaluation of DPL
    cd DPL_master
    python evaluation.py --init-weights ./DPL_pretrained/Resnet_GTA5_DPLst4_T.pth --save path_to_DPL_results/results --log-dir path_to_DPL_results
    
  • Evaluation of DPL-Dual
    python evaluation_DPL.py --data-dir-targetB ./DPI2I_images/DPI2I_City2GTA_Resnet --init-weights_S ./DPL_pretrained/Resnet_GTA5_DPLst4_S.pth --init-weights_T ./DPL_pretrained/Resnet_GTA5_DPLst4_T.pth --save path_to_DPL_dual_results/results --log-dir path_to_DPL_dual_results
    

More pretrained models and translated target images on other settings can be downloaded from:

Training

The training process of DPL consists of two phases: single-path warm-up and DPL training. The training example is given on default setting: GTA5->Cityscapes, DeepLab-V2 with ResNet-101.

Quick start for DPL training

Downlad pretrained 1 and 1 [Google_Drive, BaiduYun(Code: 3ndm)], save 1 to path_to_model_S, save 1 to path_to_model_T, then you can train DPL as following:

  1. Train dual path image generation module.

    cd ../CycleGAN_DPL
    python train.py --dataroot ../data --name dual_path_I2I --A_setroot GTA5/images --B_setroot Cityscapes/leftImg8bit/train --model cycle_diff --lambda_semantic 1 --init_weights_S path_to_model_S --init_weights_T path_to_model_T
    
  2. Generate transferred images with dual path image generation module.

    • Generate transferred GTA5->Cityscapes images.
    python test.py --name dual_path_I2I --no_dropout --load_size 1024 --crop_size 1024 --preprocess scale_width --dataroot ../data/GTA5/images --model_suffix A  --results_dir DPI2I_path_to_GTA52cityscapes
    
    • Generate transferred Cityscapes->GTA5 images.
     python test.py --name dual_path_I2I --no_dropout --load_size 1024 --crop_size 1024 --preprocess scale_width --dataroot ../data/Cityscapes/leftImg8bit/train --model_suffix B  --results_dir DPI2I_path_to_cityscapes2GTA5/train
     
     python test.py --name dual_path_I2I --no_dropout --load_size 1024 --crop_size 1024 --preprocess scale_width --dataroot ../data/Cityscapes/leftImg8bit/val --model_suffix B  --results_dir DPI2I_path_to_cityscapes2GTA5/val
    
  3. Train dual path adaptive segmentation module

    3.1. Generate dual path pseudo label.

    cd ../DPL_master
    python DP_SSL.py --save path_to_dual_pseudo_label_stepi --init-weights_S path_to_model_S --init-weights_T path_to_model_T --thresh 0.9 --threshlen 0.3 --data-list-target ./dataset/cityscapes_list/train.txt --set train --data-dir-targetB DPI2I_path_to_cityscapes2GTA5 --alpha 0.5
    

    3.2. Train 1 and 1 with dual path pseudo label respectively.

    python DPL.py --snapshot-dir snapshots/DPL_modelS_step_i --data-dir-target DPI2I_path_to_cityscapes2GTA5 --data-label-folder-target path_to_dual_pseudo_label_stepi --init-weights path_to_model_S --domain S
    
    python DPL.py --snapshot-dir snapshots/DPL_modelT_step_i --data-dir DPI2I_path_to_GTA52cityscapes --data-label-folder-target path_to_dual_pseudo_label_stepi --init-weights path_to_model_T
    

    3.3. Update path_to_model_Swith path to best 1 model, update path_to_model_Twith path to best 1 model, adjust parameter threshenlen to 0.25, then repeat 3.1-3.2 for 3 more rounds.

Single path warm up

If you want to train DPL from the very begining, training example of single path warm up is also provided as below:

Single Path Warm-up

Download 1 trained with labeled source dataset Source_only [Google_Drive, BaiduYun(Code:fjdw)].

  1. Train original cycleGAN (without Dual Path Image Translation).

    cd CycleGAN_DPL
    python train.py --dataroot ../data --name ori_cycle --A_setroot GTA5/images --B_setroot Cityscapes/leftImg8bit/train --model cycle_diff --lambda_semantic 0
    
  2. Generate transferred GTA5->Cityscapes images with original cycleGAN.

    python test.py --name ori_cycle --no_dropout --load_size 1024 --crop_size 1024 --preprocess scale_width --dataroot ../data/GTA5/images --model_suffix A  --results_dir path_to_ori_cycle_GTA52cityscapes
    
  3. Before warm up, pretrain 1 without SSL and restore the best checkpoint in path_to_pretrained_T:

    cd ../DPL_master
    python DPL.py --snapshot-dir snapshots/pretrain_T --init-weights path_to_initialization_S --data-dir path_to_ori_cycle_GTA52cityscapes
    
  4. Warm up 1.

    4.1. Generate labels on source dataset with label correction.

    python SSL_source.py --set train --data-dir path_to_ori_cycle_GTA52cityscapes --init-weights path_to_pretrained_T --threshdelta 0.3 --thresh 0.9 --threshlen 0.65 --save path_to_corrected_label_step1_or_step2 
    

    4.2. Generate pseudo labels on target dataset.

    python SSL.py --set train --data-list-target ./dataset/cityscapes_list/train.txt --init-weights path_to_pretrained_T  --thresh 0.9 --threshlen 0.65 --save path_to_pseudo_label_step1_or_step2 
    

    4.3. Train 1 with label correction.

    python DPL.py --snapshot-dir snapshots/label_corr_step1_or_step2 --data-dir path_to_ori_cycle_GTA52cityscapes --source-ssl True --source-label-dir path_to_corrected_label_step1_or_step2 --data-label-folder-target path_to_pseudo_label_step1_or_step2 --init-weights path_to_pretrained_T          
    

4.4 Update path_to_pretrained_T with path to best model in 4.3, repeat 4.1-4.3 for one more round.

More Experiments

  • For SYNTHIA to Cityscapes scenario, please train DPL with "--source synthia" and change the data path.
  • For training on "FCN-8s with VGG16", please train DPL with "--model VGG".

Citation

If you find our paper and code useful in your research, please consider giving a star and citation.

@inproceedings{cheng2021dual,
  title={Dual Path Learning for Domain Adaptation of Semantic Segmentation},
  author={Cheng, Yiting and Wei, Fangyun and Bao, Jianmin and Chen, Dong and Wen, Fang and Zhang, Wenqiang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={9082--9091},
  year={2021}
}

Acknowledgment

This code is heavily borrowed from BDL.

ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 04, 2023
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 40 Dec 11, 2022
A demo of chinese asr

chinese_asr_demo 一个端到端的中文语音识别模型训练、测试框架 具备数据预处理、模型训练、解码、计算wer等等功能 训练数据 训练数据采用thchs_30,

4 Dec 09, 2021
Simple NLP based project without any use of AI

Simple NLP based project without any use of AI

Shripad Rao 1 Apr 26, 2022
Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks for Sentence Classification Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014). R

Yoon Kim 2k Jan 02, 2023
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
OpenAI CLIP text encoders for multiple languages!

Multilingual-CLIP OpenAI CLIP text encoders for any language Colab Notebook · Pre-trained Models · Report Bug Overview OpenAI recently released the pa

Fredrik Carlsson 481 Dec 30, 2022
Header-only C++ HNSW implementation with python bindings

Hnswlib - fast approximate nearest neighbor search Header-only C++ HNSW implementation with python bindings. NEWS: version 0.6 Thanks to (@dyashuni) h

2.3k Jan 05, 2023
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (S

InstaDeep Ltd 72 Dec 09, 2022
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022